【文章內(nèi)容簡(jiǎn)介】
(1)在點(diǎn)x0處,f(x)沒(méi)有定義;(2)在點(diǎn)x0處,f(x)的極限不存在;(3)雖然在點(diǎn)x0處f(x)有定義,且存在,但,則點(diǎn)x0是f(x)一個(gè)間斷點(diǎn)。,則f(x)在=0,x==0,x=1處都連續(xù)=0處間斷,x=1處連續(xù)=0處連續(xù),x=1處間斷解:x=0處,f(0)=0∵f(00)≠f(0+0)x=0為f(x)的間斷點(diǎn)x=1處,f(1)=1f(10)=f(1+0)=f(1)∴f(x)在x=1處連續(xù) [答案]C[9703]設(shè),在x=0處連續(xù),則k等于 B. C. 分析:f(0)=k[答案]B例3[0209]設(shè)在x=0處連續(xù),則a=解:f(0)=e0=1∵f(0)=f(00)=f(0+0)∴a=1 [答案]1(二)函數(shù)在一點(diǎn)處連續(xù)的性質(zhì)由于函數(shù)的連續(xù)性是通過(guò)極限來(lái)定義的,因而由極限的運(yùn)算法則,可以得到下列連續(xù)函數(shù)的性質(zhì)。 (四則運(yùn)算)設(shè)函數(shù)f(x),g(x)在x0處均連續(xù),則(1)f(x)177。g(x)在x0處連續(xù)(2)f(x)g(x)在x0處連續(xù)(3)若g(x0)≠0,則在x0處連續(xù)。(復(fù)合函數(shù)的連續(xù)性)設(shè)函數(shù)u=g(x)在x=x0處連續(xù),y=f(u)在u0=g(x0)處連續(xù),則復(fù)合函數(shù)y=f[g(x)]在x=x0處連續(xù)。在求復(fù)合函數(shù)的極限時(shí),如果u=g(x),在x0處極限存在,又y=f(u)在對(duì)應(yīng)的處連續(xù),則極限符號(hào)可以與函數(shù)符號(hào)交換。即(反函數(shù)的連續(xù)性)設(shè)函數(shù)y=f(x)在某區(qū)間上連續(xù),且嚴(yán)格單調(diào)增加(或嚴(yán)格單調(diào)減少),則它的反函數(shù)x=f1(y)也在對(duì)應(yīng)區(qū)間上連續(xù),且嚴(yán)格單調(diào)增加(或嚴(yán)格單調(diào)減少)。(三)閉區(qū)間上連續(xù)函數(shù)的性質(zhì)在閉區(qū)間[a,b]上連續(xù)的函數(shù)f(x),有以下幾個(gè)基本性質(zhì),這些性質(zhì)以后都要用到。(有界性定理)如果函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),則f(x)必在[a,b]上有界。(最大值和最小值定理)如果函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),則在這個(gè)區(qū)間上一定存在最大值和最小值。(介值定理)如果函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),且其最大值和最小值分別為M和m,則對(duì)于介于m和M之間的任何實(shí)數(shù)C,在[a,b]上至少存在一個(gè)ξ,使得推論(零點(diǎn)定理)如果函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),且f(a)與f(b)異號(hào),則在[a,b]內(nèi)至少存在一個(gè)點(diǎn)ξ,使得f(ξ)=0(四)初等函數(shù)的連續(xù)性由函數(shù)在一點(diǎn)處連續(xù)的定理知,連續(xù)函數(shù)經(jīng)過(guò)有限次四則運(yùn)算或復(fù)合運(yùn)算而得的函數(shù)在其定義的區(qū)間內(nèi)是連續(xù)函數(shù)。又由于基本初等函數(shù)在其定義區(qū)間內(nèi)是連續(xù)的,可以得到下列重要結(jié)論。利用初等函數(shù)連續(xù)性的結(jié)論可知:如果f(x)是初等函數(shù),且x0是定義區(qū)間內(nèi)的點(diǎn),則f(x)在x0處連續(xù)也就是說(shuō),求初等函數(shù)在定義區(qū)間內(nèi)某點(diǎn)處的極限值,只要算出函數(shù)在該點(diǎn)的函數(shù)值即可。[0407][0611] +1=0在區(qū)間(0,1)內(nèi)至少有一個(gè)實(shí)根.證:設(shè)f(x)=x35x+1f(x)在[0,1]上連續(xù)f(0)=1 f(1)=3由零點(diǎn)定理可知,至少存在一點(diǎn)ξ∈(0,1)使得f(ξ)=0,ξ35ξ+1=0即方程在(0,1)內(nèi)至少有一個(gè)實(shí)根。本章小結(jié)函數(shù)、極限與連續(xù)是微積分中最基本、最重要的概念之一,而極限運(yùn)算又是微積分的三大運(yùn)算中最基本的運(yùn)算之一,必須熟練掌握,這會(huì)為以后的學(xué)習(xí)打下良好的基礎(chǔ)。這一章的內(nèi)容在考試中約占15%,約為22分左右?,F(xiàn)將本章的主要內(nèi)容總結(jié)歸納如下:一、概念部分重點(diǎn):極限概念,無(wú)窮小量與等價(jià)無(wú)窮小量的概念,連續(xù)的概念。極限概念應(yīng)該明確極限是描述在給定變化過(guò)程中函數(shù)變化的性態(tài),極限值是一個(gè)確定的常數(shù)。函數(shù)在一點(diǎn)連續(xù)性的三個(gè)基本要素:(1)f(x)在點(diǎn)x0有定義。(2)存在。(3)。常用的是f(x00)=f(x0+0)=f(x0)。二、運(yùn)算部分重點(diǎn):求極限,函數(shù)的點(diǎn)連續(xù)性的判定。:(1)利用極限的四則運(yùn)算法則求極限;對(duì)于“”型不定式,可考慮用因式分解或有理化消去零因子法。(2)利用兩個(gè)重要極限求極限;(3)利用無(wú)窮小量的性質(zhì)求極限; (4)利用函數(shù)的連續(xù)性求極限;若f(x)在x0處連續(xù),則。(5)利用等價(jià)無(wú)窮小代換定理求極限;(6)會(huì)求分段函數(shù)在分段點(diǎn)處的極限;(7)利用洛必達(dá)法則求未定式的極限。,利用閉區(qū)間上連續(xù)函數(shù)的零點(diǎn)定理證明方程的根的存在性?!璦g an employment tribunal clai Emloyment tribunals sort out disagreements between employers and employees. You may need to make a claim to an employment tribunal if: you don39。t agree with the disciplinary action your employer has taken against you your employer dismisses you and you think that you have been dismissed unfairly. For more informu, take advice from one of the organisations listed underFur ther help. Employment tribunals are less formal than some other courts, but it is still a legal process and you will need to give evidence under an oath or affirmation. Most people find making a claim to an employment tribunal challenging. If you are thinking about making a claim to an employment tribunal, you should get help straight away from one of the organisations listed underFurther help. ation about dismissal and unfair dismissal, seeDismissal. Yo