【總結】邊城高級中學張秀洲1、了解兩個正數(shù)的算術平均數(shù)與幾何平均數(shù).2、理解定理1和定理2(基本不等式).3、掌握用基本不等式求一些函數(shù)的最值及實際的應用問題.自學教材P5—P8解決下列問題二、掌握用基本不等式求一些函數(shù)的最值及實際的應用問題.三、《教材》習題第5、6、7、8、9、10、11題.
2025-07-24 03:13
【總結】一、設疑引入等關系嗎?找出一些相等關系或不能在這個圖中數(shù)學家大會的會標,你)0)(2(?2,.122222????????baabbabaabbaba你能證明嗎時,等號成立當且僅當我們有一般地,對于任意實數(shù)二、新知探究稱之為基本不等式通常寫作則若特別地,22,0,0,.2baababb
2025-08-05 05:43
【總結】例.0,0(1)10,___________(2)10,___________xyxyxyxyxy??????如果那么如果那么25?210?最值定理:(1)和定--積最大.(2)積定--和最小.()xyfd
2025-08-05 04:40
【總結】高二數(shù)學(必修五)多媒體課件基本不等式的證明【問題1】把一個物體放在天平的一個盤子上,在另一個盤子上放砝碼使天平平衡,稱得物體的質(zhì)量為,天平的兩臂長略有不同(其它因素不計),那么并非實際質(zhì)量.不過,我們可作第二次測量:把物體調(diào)換到天平的另一盤上,此時稱得物體的質(zhì)量為的質(zhì)量呢?:
2025-08-05 03:53
【總結】主講老師::復習引入1.基本不等式:復習引入1.基本不等式:復習引入1.基本不等式:前者只要求a,b都是實數(shù),而后者要求a,b都是正數(shù).;SMT貼片SMTSMT貼片加工SMT加工貼片加工廠;出歷陽文育羊柬進攻彭城安都領步
2025-08-16 01:54
【總結】新課標人教版課件系列《高中數(shù)學》必修5《基本不等式-均值不等式》教學目標?推導并掌握兩個正數(shù)的算術平均數(shù)不小于它們的幾何平均數(shù)這個重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡單應用。?教學重點:?推導并掌握兩個正數(shù)的算術平均數(shù)不小于它們的幾何平均數(shù)這個重要定理;利用均值定
2025-08-05 04:41
【總結】均值不等式的應用(求最值)回顧一下重要不等式:均值不等式:222abab??(,0)2ababab???幾個重要的變形:2(0,0)ababab????2(,0)2ababab?????????222()(,)22a
2025-11-09 08:48
【總結】第2課時基本不等式【課標要求】1.理解并掌握定理1、定理2,會用兩個定理解決函數(shù)的最值或值域問題.2.能運用平均值不等式(兩個正數(shù)的)解決某些實際問題.【核心掃描】1.基本不等式常用來考查函數(shù)最值等問題,要注意不等式成立的前提條件.(重點)2.實際應用中的最值問題通常轉化為y=ax+bx
2025-07-23 17:21
【總結】第一篇:基本不等式教案 基本不等式 【教學目標】 1、掌握基本不等式,能正確應用基本不等式的方法解決最值問題 2、用易錯問題引入要研究的課題,通過實踐讓同學對基本不等式應用的二個條件有進一步的...
2025-10-19 11:37
【總結】基本不等式說課稿 基本不等式是主要應用于求某些函數(shù)的最值及證明的不等式。以下是小編整理的基本不等式說課稿,希望對大家有幫助! 基本不等式說課稿1尊敬的各位考官大家好,我是今天的X號考生,今天我說課...
2024-12-07 02:50
【總結】......《不等式》的說課稿各位領導、老師們大家好:今天我說課的內(nèi)容是北師版數(shù)學高中教材必修五第三章第一二三節(jié),我將從八個方面(教材、學情、教學模式、教學設計、板書、評價、開發(fā)、得失,出示ppt)說我對此課的思考和
2025-04-17 00:22
【總結】第7講基本不等式及其性質(zhì)江蘇省普通高中數(shù)學課程標準教學要求:掌握基本不等式≤(a≥0,b≥0);能用基本不等式證明簡單不等式(指只用一次基本不等式即可解決的問題);能用基本不等式求解簡單的最大(?。┲祮栴}(指只用一次基本不等式即可解決的問題)。2020江蘇高考數(shù)學科考試說明:c級
2025-11-02 02:53
【總結】主講老師:習題講評復習幾個重要的不等式:復習幾個重要的不等式:)(.2,,.122”時取“當且僅當那么如果?????baabbaRba復習幾個重要的不等式:)(.2,,.122”時取“當且僅當那么如果?????ba
2025-10-31 04:45
【總結】基本不等式的應用一.基本不等式1.(1)若,則(2)若,則(當且僅當時取“=”)2.(1)若,則(2)若,則(當且僅當時取“=”)(3)若,則(當且僅當時取“=”),則(當且僅當時取“=”);若,則(當且僅當時取“=”)若,則(當且僅當時取“=”),則(當且僅當時取“=”)若,則(當且僅當時取“=”),則(當且僅當時取“=”)
2025-08-05 04:58
【總結】第四節(jié)基本不等式基礎梳理2()2ab?1.基本不等式2abab??(1)基本不等式成立的條件:.(2)等號成立的條件:當且僅當時取等號.2.幾個重要的不等式(1)a2+b2≥(a,b∈R).(2)≥(a,b同號).(3)a
2025-11-03 01:26