freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

[考研數(shù)學(xué)]考研數(shù)學(xué)一公式集錦(編輯修改稿)

2024-09-13 03:23 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 稱(chēng)事件、是相互獨(dú)立的。若事件、相互獨(dú)立,且,則有若事件、相互獨(dú)立,則可得到與、與、與也都相互獨(dú)立。必然事件和不可能事件216。與任何事件都相互獨(dú)立。216。與任何事件都互斥。②多個(gè)事件的獨(dú)立性設(shè)ABC是三個(gè)事件,如果滿足兩兩獨(dú)立的條件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)并且同時(shí)滿足P(ABC)=P(A)P(B)P(C)那么A、B、C相互獨(dú)立。對(duì)于n個(gè)事件類(lèi)似。(15)全概公式設(shè)事件滿足1176。兩兩互不相容,2176。,則有。(16)貝葉斯公式設(shè)事件,…,及滿足1176。 ,…,兩兩互不相容,0,1,2,…,2176。 ,則,i=1,2,…n。此公式即為貝葉斯公式。,(,…,),通常叫先驗(yàn)概率。,(,…,),通常稱(chēng)為后驗(yàn)概率。貝葉斯公式反映了“因果”的概率規(guī)律,并作出了“由果朔因”的推斷。(17)伯努利概型我們作了次試驗(yàn),且滿足u 每次試驗(yàn)只有兩種可能結(jié)果,發(fā)生或不發(fā)生;u 次試驗(yàn)是重復(fù)進(jìn)行的,即發(fā)生的概率每次均一樣;u 每次試驗(yàn)是獨(dú)立的,即每次試驗(yàn)發(fā)生與否與其他次試驗(yàn)發(fā)生與否是互不影響的。這種試驗(yàn)稱(chēng)為伯努利概型,或稱(chēng)為重伯努利試驗(yàn)。用表示每次試驗(yàn)發(fā)生的概率,則發(fā)生的概率為,用表示重伯努利試驗(yàn)中出現(xiàn)次的概率。第二章 隨機(jī)變量及其分布(1)離散型隨機(jī)變量的分布律設(shè)離散型隨機(jī)變量的可能取值為Xk(k=1,2,…)且取各個(gè)值的概率,即事件(X=Xk)的概率為P(X=xk)=pk,k=1,2,…,則稱(chēng)上式為離散型隨機(jī)變量的概率分布或分布律。有時(shí)也用分布列的形式給出:。顯然分布律應(yīng)滿足下列條件:(1), (2)。(2)連續(xù)型隨機(jī)變量的分布密度設(shè)是隨機(jī)變量的分布函數(shù),若存在非負(fù)函數(shù),對(duì)任意實(shí)數(shù),有, 則稱(chēng)為連續(xù)型隨機(jī)變量。稱(chēng)為的概率密度函數(shù)或密度函數(shù),簡(jiǎn)稱(chēng)概率密度。密度函數(shù)具有下面4個(gè)性質(zhì):1176。 。2176。 。(3)離散與連續(xù)型隨機(jī)變量的關(guān)系積分元在連續(xù)型隨機(jī)變量理論中所起的作用與在離散型隨機(jī)變量理論中所起的作用相類(lèi)似。(4)分布函數(shù)設(shè)為隨機(jī)變量,是任意實(shí)數(shù),則函數(shù)稱(chēng)為隨機(jī)變量X的分布函數(shù),本質(zhì)上是一個(gè)累積函數(shù)。 可以得到X落入?yún)^(qū)間的概率。分布函數(shù)表示隨機(jī)變量落入?yún)^(qū)間(– ∞,x]內(nèi)的概率。分布函數(shù)具有如下性質(zhì):1176。 ;2176。 是單調(diào)不減的函數(shù),即時(shí),有 ;3176。 , ;4176。 ,即是右連續(xù)的;5176。 。對(duì)于離散型隨機(jī)變量,;對(duì)于連續(xù)型隨機(jī)變量, 。(5)八大分布01分布P(X=1)=p, P(X=0)=q二項(xiàng)分布在重貝努里試驗(yàn)中,設(shè)事件發(fā)生的概率為。事件發(fā)生的次數(shù)是隨機(jī)變量,設(shè)為,則可能取值為。, 其中,則稱(chēng)隨機(jī)變量服從參數(shù)為,的二項(xiàng)分布。記為。當(dāng)時(shí),,這就是(01)分布,所以(01)分布是二項(xiàng)分布的特例。泊松分布設(shè)隨機(jī)變量的分布律為,,則稱(chēng)隨機(jī)變量服從參數(shù)為的泊松分布,記為或者P()。泊松分布為二項(xiàng)分布的極限分布(np=λ,n→∞)。超幾何分布隨機(jī)變量X服從參數(shù)為n,N,M的超幾何分布,記為H(n,N,M)。幾何分布,其中p≥0,q=1p。隨機(jī)變量X服從參數(shù)為p的幾何分布,記為G(p)。均勻分布設(shè)隨機(jī)變量的值只落在[a,b]內(nèi),其密度函數(shù)在[a,b]上為常數(shù),即a≤x≤b 其他,則稱(chēng)隨機(jī)變量在[a,b]上服從均勻分布,記為X~U(a,b)。分布函數(shù)為 a≤x≤b 0, xa, 1, xb。當(dāng)a≤x1x2≤b時(shí),X落在區(qū)間()內(nèi)的概率為。指數(shù)分布 ,0, ,其中,則稱(chēng)隨機(jī)變量X服從參數(shù)為的指數(shù)分布。X的分布函數(shù)為 , x0。 記住積分公式:正態(tài)分布設(shè)隨機(jī)變量的密度函數(shù)為, ,其中、為常數(shù),則稱(chēng)隨機(jī)變量服從參數(shù)為、的正態(tài)分布或高斯(Gauss)分布,記為。具有如下性質(zhì):1176。 的圖形是關(guān)于對(duì)稱(chēng)的;2176。 當(dāng)時(shí),為最大值;若,則的分布函數(shù)為。參數(shù)、時(shí)的正態(tài)分布稱(chēng)為標(biāo)準(zhǔn)正態(tài)分布,記為,其密度函數(shù)記為,分布函數(shù)為。是不可求積函數(shù),其函數(shù)值,已編制成表可供查用。Φ(x)=1Φ(x)且Φ(0)=。如果~,則~。 (6)分位數(shù)下分位表:;上分位表:。(7)函數(shù)分布離散型已知的分布列為,的分布列(互不相等)如下:,若有某些相等,則應(yīng)將對(duì)應(yīng)的相加作為的概率。連續(xù)型先利用X的概率密度f(wàn)X(x)寫(xiě)出Y的分布函數(shù)FY(y)=P(g(X)≤y),再利用變上下限積分的求導(dǎo)公式求出fY(y)。第三章 二維隨機(jī)變量及其分布(1)聯(lián)合分布離散型如果二維隨機(jī)向量(X,Y)的所有可能取值為至多可列個(gè)有序?qū)Γ▁,y),則稱(chēng)為離散型隨機(jī)量。設(shè)=(X,Y)的所有可能取值為,且事件{=}的概率為pij,稱(chēng)為=(X,Y)的分布律或稱(chēng)為X和Y的聯(lián)合分布律。聯(lián)合分布有時(shí)也用下面的概率分布表來(lái)表示: YXy1y2…yj…x1p11p12…p1j…x2p21p22…p2j…xipi1……這里pij具有下面兩個(gè)性質(zhì):(1)pij≥0(i,j=1,2,…);(2)連續(xù)型對(duì)于二維隨機(jī)向量,如果存在非負(fù)函數(shù),使對(duì)任意一個(gè)其鄰邊分別平行于坐標(biāo)軸的矩形區(qū)域D,即D={(X,Y)|axb,cyd}有則稱(chēng)為連續(xù)型隨機(jī)向量;并稱(chēng)f(x,y)為=(X,Y)的分布密度或稱(chēng)為X和Y的聯(lián)合分布密度。 分布密度f(wàn)(x,y)具有下面兩個(gè)性質(zhì):(1) f(x,y)≥0。(2) (2)二維隨機(jī)變量的本質(zhì)(3)聯(lián)合分布函數(shù)設(shè)(X,Y)為二維隨機(jī)變量,對(duì)于任意實(shí)數(shù)x,y,二元函數(shù)稱(chēng)為二維隨機(jī)向量(X,Y)的分布函數(shù),或稱(chēng)為隨機(jī)變量X和Y的聯(lián)合分布函數(shù)。 分布函數(shù)是一個(gè)以全平面為其定義域,以事件的概率為函數(shù)值的一個(gè)實(shí)值函數(shù)。分布函數(shù)F(x,y)具有以下的基本性質(zhì):(1)(2)F(x,y)分別對(duì)x和y是非減的,即當(dāng)x2x1時(shí),有F(x2,y)≥F(x1,y)。當(dāng)y2y1時(shí),有F(x,y2) ≥F(x,y1)。(3)F(x,y)分別對(duì)x和y是右連續(xù)的,即(4)(5)對(duì)于.(4
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1