freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

ottaaa如何學高一數(shù)學(編輯修改稿)

2025-08-31 10:01 本頁面
 

【文章內容簡介】  對策四:有其他結論嗎?   對策五:我能得到什么解題規(guī)律?  誤區(qū)二:多做題目總能遇到考試題   有這種想法的人總會感到失望。每一份綜合試卷,出卷人總要避免考舊題、陳題,盡量從新的角度,新的層面上設計問題。但是考查的知識點和數(shù)學思想方法是恒久不變的。所以多做題,不會碰巧和考題零距離親密接觸,反而會把自己陷入無邊無際的題海之中。解決問題的辦法是從知識點和思想方法的角度分別對所解題目進行歸類,總結解題經(jīng)驗的同時,確認自己是否真正掌握并確認復習的重點。   對策一:讓自己花點時間整理最近解題的題型與思路。   對策二:這道題和以前的某一題差不多嗎?   對策三:此題的知識點我是否熟悉了?   對策四:最近有哪幾題的圖形相近?能否歸類?   對策五:這一題的解題思想在以前題目中也用到了,讓我把它們找出來!  誤區(qū)三 鉆研難題基礎題就簡單了   有一個學生曾對我說:“我喜歡做難題,鉆研數(shù)學難題能讓我感到思維中的快樂,簡單的題目沒有什么意思?!睉撜f這位同學已經(jīng)體會到了數(shù)學學習的快樂,他對數(shù)學開始有自己的理解,可是奇怪的是他的數(shù)學成績總達不到滿意的高分,考完試后他總是后悔有一些地方不細心或沒注意。其實這也在一定程度上反映出我們數(shù)學學習中的浮躁狀況,老師愛講難題、綜合題,學生想做綜合題、難題,在忽視基礎的同時,迷失了數(shù)學學習的方向。   對策一:告訴自己數(shù)學思維不等于復雜思維,數(shù)學的美往往體現(xiàn)在一些小題目中。   對策二:“簡約而不簡單”在平常題中體會數(shù)學思維的樂趣。   對策三:“一滴朝露也能折射出太陽的光輝?!弊屛覐幕A題中找到綜合題的影子。   對策四:這道題真的簡單嗎?   對策五:我是一名優(yōu)秀的學生,我能在平凡中體現(xiàn)出我的優(yōu)秀。  誤區(qū)四 思想有點高不可攀   一談到數(shù)學思想方法,有些學生會認為深不可測、高不可攀。其實每一道數(shù)學題之中都包含著數(shù)學思想方法,例如把分式方程化為整式方程就應用了轉化思想,列方程解應用題體現(xiàn)了方程思想,平面直角坐標系中圖象與解析式反映了數(shù)形結合思想,圖形的翻折與旋轉則表現(xiàn)了運動變換思想等等。數(shù)學思想方法是指導解題的十分重要的方針,有利于培養(yǎng)學生思維的廣闊性、深刻性、靈活性和組織性。在初三數(shù)學的學習過程中,自己不妨把圖形動一動、變一變,把條件和結論作一些其它方面的聯(lián)想,數(shù)學化地思考問題。中考題的壓軸題往往是在串聯(lián)幾個知識點的同時考查學生猜想與探究、函數(shù)與運動、變換與分類等能力,這在能力層面上提出了較高的要求。   對策一:數(shù)學思想方法并不神秘,它蘊藏在題目之中。   對策二:了解一些數(shù)學思想,找到幾道典型題。   對策三:解題完畢問自己“我運用了什么數(shù)學思想方法”?   對策四:解題前問自己從什么角度去思考?(方程角度、運動角度、函數(shù)角度、分類討論角度等)   對策五:請老師介紹一些數(shù)學思想方法。高中數(shù)學學習有妙法 收藏到書簽 作者:admin 點擊: 1524次 成績不理想?【全國頂級名師視頻輔導高中課程】遠題海,近方法!高一入口,高二入口,高三入口 往往有同學進入高中以后不能適應數(shù)學學習,進而影響到學習的積極性,甚至成績一落千丈。為什么會這樣呢?讓我們先看看高中數(shù)學和初中數(shù)學有些什么樣的轉變吧。 一、高中數(shù)學的特點 理論加強 課程增多 難度增大 要求提高 二、掌握數(shù)學思想 高中數(shù)學從學習方法和思想方法上更接近于高等數(shù)學。學好它,需要我們從方法論的高度來掌握它。我們在研究數(shù)學問題時要經(jīng)常運用唯物辯證的思想去解決數(shù)學問題。數(shù)學思想,實質上就是唯物辯證法在數(shù)學中的運用的反映。中學數(shù)學學習要重點掌握的的數(shù)學思想有以上幾個:集合與對應思想,初步公理化思想,數(shù)形結合思想,運動思想,轉化思想,變換思想。 例如,數(shù)列、一次函數(shù)、解析幾何中的直線幾個概念都可以用函數(shù)(特殊的對應)的概念來統(tǒng)一。又比如,數(shù)、方程、不等式、數(shù)列幾個概念也都可以統(tǒng)一到函數(shù)概念。 再看看下面這個運用“矛盾”的觀點來解題的例子。 已知動點Q在圓x2+y2=1上移動,定點P(2,0),求線段PQ中點的軌跡。 分析此題,圖中P、Q、M三點是互相制約的,而Q點的運動將帶動M點的運動;主要矛盾是點Q的運動,而點Q的運動軌跡遵循方程x02+y02=1;次要矛盾關系:M是線段PQ的中點,可以用中點公式將M的坐標(x,y)用點Q的坐標表示出來。 x=(x0+2)/2 y=y0/2 顯然,用代入的方法,消去題中的x0、y0就可以求得所求軌跡。 數(shù)學思想方法與解題技巧是不同的,在證明或求解中,運用歸納、演繹、換元等方法解題問題可以說是解題的技術性問題,而數(shù)學思想是解題時帶有指導性的普遍思想方法。在解一道題時,從整體考慮,應如何著手,有什么途徑?就是在數(shù)學思想方法的指導下的普遍性問題。 有了數(shù)學思想以后,還要掌握具體的方法,比如:換元、待定系數(shù)、數(shù)學歸納法、分析法、綜合法、反證法等等。只有在解題思想的指導下,靈活地運用具體的解題方法才能真正地學好數(shù)學,僅僅掌握具體的操作方法,而沒有從解題思想的角度考慮問題,往往難于使數(shù)學學習進入更高的層次,會為今后進入大學深造帶來很有麻煩。 在具體的方法中,常用的有:觀察與實驗,聯(lián)想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。 要打贏一場戰(zhàn)役,不可能只是勇猛沖殺、一不怕死二不怕苦就可以打贏的,必須制訂好事關全局的戰(zhàn)術和策略問題。解數(shù)學題時,也要注意解題思維策略問題,經(jīng)常要思考:選擇什么角度來進入,應遵循什么原則性的東西。一般地,在解題中所采取的總體思路,是帶有原則性的思想方法,是一種宏觀的指導,一般性的解決方案。 中學數(shù)學中經(jīng)常用到的數(shù)學思維策略有:以簡馭繁、數(shù)形結全、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔。 如果有了正確的數(shù)學思想方法,采取了恰當?shù)臄?shù)學思維策略,又有了豐富的經(jīng)驗和扎實的基本功,一定可以學好高中數(shù)學。 三、學習方法的改進 身處應試教育的怪圈,每個教師和學生都不由自主地陷入“題?!敝?,教師拍心某種題型沒講,高考時做不出,學生怕少做一道題,萬一考了損失太慘重,在這樣一種氛圍中,往往忽視了學習方法的培養(yǎng),每個學生都有自己的方法,但什么樣的學習方法才是正確的方法呢?是不是一定要“博覽群題”才能提高水平呢? 現(xiàn)實告訴我們,大膽改進學習方法,這是一個非常重大的問題。 (一) 學會聽、讀 我們每天在學校里都在聽老師講課,閱讀課本或者資料,但我們聽和讀對不對呢? 讓我們從聽(聽講、課堂學習)和讀(閱讀課本和相關資料)兩方面來談談吧。 學生學習的知識,往往是間接的知識,是抽象化、形式化的知識,這些知識是在前人探索和實踐的基礎上提煉出來的,一般不包含探索和思維的過程。因此必須聽好老師講課,集中注意力,積極思考問題。弄清講得內容是什么?怎么分析?理由是什么?采用什么方法?還有什么疑問?只有這樣,才可能對教學內容有所理解。 聽講的過程不是一個被動參預的過程,在聽講的前提下,還要展開來分析:這里用了什么思想方法,這樣做的目的是什么?為什么老師就能想到最簡捷的方法?這個題有沒有更直接的方法? “學而不思則罔,思而不學則殆”,在聽講的過程中一定要有積極的思考和參預,這樣才能達到最高的學習效率。 閱讀數(shù)學教材也是掌握數(shù)學知識的非
點擊復制文檔內容
醫(yī)療健康相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1