【總結(jié)】文科圓錐曲線、右焦點,為直線上一點,是底角為的等腰三角形,則的離心率為() 【答案】C【命題意圖】本題主要考查橢圓的性質(zhì)及數(shù)形結(jié)合思想,是簡單題.【解析】∵△是底角為的等腰三角形,∴,,∴=,∴,∴=,,焦點在軸上,與拋物線的準線交于兩點,;則的實軸長為()
2025-06-25 16:46
【總結(jié)】WORD資料可編輯高三文科數(shù)學專題復習之圓錐曲線知識歸納:名稱橢圓雙曲線圖象定義平面內(nèi)到兩定點的距離的和為常數(shù)(大于)的動點的軌跡叫橢圓即當2﹥2時,軌跡
2025-04-17 13:10
【總結(jié)】圓錐曲線一、知識點1、曲線和方程2、橢圓定義(第一定義、第二定義)3、橢圓標準方程(1、2)與參數(shù)方程4、橢圓性質(zhì):圖像特點、范圍、頂點、離心率、對稱性、準線、焦半徑、通徑等5、橢圓與直線的位置關(guān)系二、雙曲線1、定義(第一、第二定義)2、標準方程3、性質(zhì)“圖像、范圍、頂點、離心率、對稱性、準線、漸近線、焦半徑、通徑等4、雙曲線與直
2025-07-23 20:57
【總結(jié)】關(guān)于圓錐曲線的中點弦問題直線與圓錐曲線相交所得弦中點問題,是解析幾何中的重要內(nèi)容之一,也是高考的一個熱點問題。這類問題一般有以下三種類型:(1)求中點弦所在直線方程問題;(2)求弦中點的軌跡方程問題;(3)求弦中點的坐標問題。其解法有代點相減法、設(shè)而不求法、參數(shù)法、待定系數(shù)法及中心對稱變換法等。一、求中點弦所在直線方程問題例1、過橢圓內(nèi)一點M(2,1)引一條弦,使弦被
2025-07-26 08:15
【總結(jié)】圓錐曲線關(guān)于幾種特殊弦的探究作者單位數(shù)學與信息科學學院指導老師作者姓名專業(yè)、班級數(shù)學與應用數(shù)學專業(yè)
2025-02-25 21:02
【總結(jié)】圓錐曲線一橢圓1橢圓(a>b>0)的焦半徑公式:,(,).2:點和橢圓()的關(guān)系:(1)點在橢圓外;(2)點在橢圓上=1;(3)點在橢圓內(nèi)。3:圓錐曲線焦點位置的判斷(首先化成標準方程,然后再判斷)(1)橢圓:由,母的大小決定,焦點在分母大的坐標軸上。如已知方程表示焦點在y軸上的橢圓,則m的取值范圍是(2)雙曲線:由,項系數(shù)的正負決定,焦點在系數(shù)為正的坐標軸上;(3)
2025-08-09 05:45
【總結(jié)】......圓錐曲線公式大全1、橢圓的定義、橢圓的標準方程、橢圓的性質(zhì)橢圓的圖象和性質(zhì)橢圓定義若為橢圓上任意一點,則有|MF1|+|MF2|=2a焦點位置yxox軸yxo
2025-07-20 00:14
【總結(jié)】直線和圓錐曲線??糹an錐曲線經(jīng)