【總結(jié)】摘要洪峰流量的預(yù)測(cè)可以基本定型洪水的規(guī)模,可以提前制定合理的防洪預(yù)案,及時(shí)減少人員傷亡和財(cái)產(chǎn)損失,因而預(yù)報(bào)洪峰流量具有重要意義。河道水情預(yù)報(bào)十分復(fù)雜,由于受各種因素的影響表現(xiàn)為非線性動(dòng)力學(xué)過程,而且因素之間的變化及相互影響關(guān)系也難以確定。鑒于人工神經(jīng)網(wǎng)絡(luò)有很強(qiáng)的處理大規(guī)模非線性動(dòng)力學(xué)系統(tǒng)的能力,本文緊緊圍繞人工神經(jīng)網(wǎng)絡(luò)的數(shù)學(xué)領(lǐng)域的知識(shí),改進(jìn)了BP網(wǎng)絡(luò)洪水預(yù)報(bào)模型。具體工作如下:針對(duì)
2025-06-18 15:58
【總結(jié)】第三章前饋人工神經(jīng)網(wǎng)絡(luò)--誤差反傳(BP)算法的改進(jìn)與BP網(wǎng)絡(luò)設(shè)計(jì)基于BP算法的多層前饋網(wǎng)絡(luò)模型?三層BP網(wǎng)絡(luò)o1?ok?olW1○Wk○Wl○y1○
2025-01-05 03:16
【總結(jié)】I基于神經(jīng)網(wǎng)絡(luò)的電路故障診斷摘要電路的故障診斷和神經(jīng)網(wǎng)絡(luò)是當(dāng)今學(xué)術(shù)界的兩大熱點(diǎn)問題。本文主要是以模擬電路的故障診斷為例進(jìn)行研究。目的在于將模擬電路故障診斷與神經(jīng)網(wǎng)絡(luò)方面的最新成果相結(jié)合,探索解決模擬電路故障診斷的一條新的途徑。在簡(jiǎn)要介紹標(biāo)準(zhǔn)BP神經(jīng)網(wǎng)絡(luò)基本原理的基礎(chǔ)上,詳細(xì)說(shuō)明了基于改進(jìn)BP神經(jīng)網(wǎng)絡(luò)算法的模擬電路故障診斷方法
2024-12-04 09:30
【總結(jié)】——蚊子分類問題?正向傳播:?輸入樣本---輸入層---各隱層---輸出層?判斷是否轉(zhuǎn)入反向傳播階段:?若輸出層的實(shí)際輸出與期望的輸出(教師信號(hào))不符?誤差反傳?誤差以某種形式在各層表示----修正各層單元的權(quán)值?網(wǎng)絡(luò)輸出的誤差減少到可接受的程度或達(dá)到預(yù)先設(shè)定的學(xué)習(xí)次數(shù)為止一、BP網(wǎng)絡(luò)的標(biāo)準(zhǔn)
2025-05-25 22:33
【總結(jié)】智能中國(guó)網(wǎng)提供學(xué)習(xí)支持BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法概述?Rumelhart,McClelland于1985年提出了BP網(wǎng)絡(luò)的誤差反向后傳BP(BackPropagation)學(xué)習(xí)算法?BP算法基本原理?利用輸出后的誤差來(lái)估計(jì)輸出層的直接前導(dǎo)層的誤差,再用這個(gè)誤差估計(jì)更前一層的誤差,如此一層一層的反
【總結(jié)】1神經(jīng)網(wǎng)絡(luò)與應(yīng)用11月16日2第六章BP網(wǎng)絡(luò)3BP網(wǎng)基本概念?目前實(shí)際應(yīng)用中最常用?采用(BackPropagation-BP)學(xué)習(xí)算法?多層前饋型神經(jīng)網(wǎng)絡(luò)?隱藏層神經(jīng)元傳遞函數(shù)為S型函數(shù)?可以解決非線性問題?用于函數(shù)逼近、模式識(shí)別和數(shù)據(jù)壓縮等4BP神經(jīng)元
2025-07-21 23:39
【總結(jié)】1例2-4-1M構(gòu)建線性神經(jīng)網(wǎng)絡(luò)2線性神經(jīng)元結(jié)構(gòu)Matlab用符號(hào)書用符號(hào)3線性神經(jīng)元結(jié)構(gòu)模型Matlab用符號(hào)書用符號(hào))()(1.1npurelinnfabpw
2025-01-05 03:15
【總結(jié)】本科生畢業(yè)設(shè)計(jì)(論文)題目:姓名:學(xué)號(hào):學(xué)院:
2025-06-20 12:28
【總結(jié)】人工神經(jīng)網(wǎng)絡(luò)及其應(yīng)用第4講BP神經(jīng)網(wǎng)絡(luò)何建華電信系,華中科技大學(xué)2020年2月28日2020/11/232一、內(nèi)容回顧二、BP網(wǎng)絡(luò)三、網(wǎng)絡(luò)設(shè)計(jì)四、改進(jìn)BP網(wǎng)絡(luò)五、內(nèi)容小結(jié)內(nèi)容安排2020/11/233一、內(nèi)容回顧
2024-10-17 20:05
【總結(jié)】人工神經(jīng)網(wǎng)絡(luò)及其應(yīng)用第4講BP神經(jīng)網(wǎng)絡(luò)何建華電信系,華中科技大學(xué)2022年2月28日2022/2/12一、內(nèi)容回顧二、BP網(wǎng)絡(luò)三、網(wǎng)絡(luò)設(shè)計(jì)四、改進(jìn)BP網(wǎng)絡(luò)五、內(nèi)容小結(jié)內(nèi)容安排2022/2/13一、內(nèi)容回顧
2025-01-08 01:10
【總結(jié)】主要內(nèi)容?BP神經(jīng)網(wǎng)絡(luò)編程?BP神經(jīng)網(wǎng)絡(luò)工具箱?RBP網(wǎng)絡(luò)工具箱?GRNN網(wǎng)絡(luò)工具箱?……BP神經(jīng)網(wǎng)絡(luò)通常是指基于誤差反向傳播算法(BP算法)的多層前向神經(jīng)網(wǎng)絡(luò)。該網(wǎng)絡(luò)的主要特點(diǎn)是信號(hào)向前傳遞,誤差反向傳播。向前傳遞中,輸入信號(hào)從輸入層經(jīng)隱含層逐層處理,直至輸出層。每一層的神經(jīng)元狀態(tài)只影響到下一層
2025-01-04 16:17
【總結(jié)】基于BP神經(jīng)網(wǎng)絡(luò)的自校正PID控制研究摘要:基于反向傳播BP算法的神經(jīng)網(wǎng)絡(luò)具有很強(qiáng)的學(xué)習(xí)能力,適應(yīng)能力.本文詳細(xì)敘述了BP算法的原理,并將改進(jìn)的BP神經(jīng)網(wǎng)絡(luò)應(yīng)用在傳統(tǒng)的PID控制中,克服了PID控制在參數(shù)的調(diào)整過程中對(duì)于系統(tǒng)模型過分依賴的缺點(diǎn).利用MATLAB仿真的結(jié)果表明基于BP神經(jīng)網(wǎng)絡(luò)的自校正控制能夠使傳
2024-11-05 23:02
【總結(jié)】基于MATLABBP神經(jīng)網(wǎng)絡(luò)的數(shù)字圖像識(shí)別【摘要】隨著現(xiàn)代社會(huì)的發(fā)展,信息的形式和數(shù)量正在迅猛增長(zhǎng)。其中很大一部分是圖像,圖像可以把事物生動(dòng)的呈現(xiàn)在我們面前,讓我們更直觀地接受信息。同時(shí),計(jì)算機(jī)已經(jīng)作為一種人們普遍使用的工具為人們的生產(chǎn)生活服務(wù)。如今我們也可以把這些技術(shù)應(yīng)用在交通領(lǐng)域。作為智能交通系統(tǒng)(InteUigent
2024-12-01 23:38
【總結(jié)】基于BP神經(jīng)網(wǎng)絡(luò)的PID控制器設(shè)計(jì)中文摘要經(jīng)典PID控制算法作為一般工業(yè)過程控制方法應(yīng)用范圍相當(dāng)廣泛,原則上講它并不依賴于被控對(duì)象的具體數(shù)學(xué)模型,但算法參數(shù)的整定卻是一件很困難的工作,更為重要的是即使參數(shù)整定完成,由于參數(shù)不具有自適應(yīng)能力,因環(huán)境的變化,PID控制對(duì)系統(tǒng)偏差的響應(yīng)變差,參數(shù)需重新整定。針對(duì)上述問題,人們一直采用模糊、神經(jīng)網(wǎng)絡(luò)等各種調(diào)整PID參數(shù)的自適應(yīng)方法,力圖克服這一難
【總結(jié)】本科生畢業(yè)設(shè)計(jì)(論文)題目:姓名:學(xué)號(hào):
2025-07-02 09:08