freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中科院考研各種大綱(編輯修改稿)

2025-07-22 01:38 本頁面
 

【文章內(nèi)容簡介】 2. 熟練掌握向量的運算(線性運算、數(shù)量積、向量積),掌握兩向量垂直、平行的條件。3. 理解向量在軸上的投影,了解投影定理及投影的運算。理解方向數(shù)與方向余弦、向量的坐標(biāo)表達(dá)式,會用坐標(biāo)表達(dá)式進(jìn)行向量的運算。4. 熟悉平面方程和空間直線方程的各種形式,熟練掌握平面方程和空間直線方程的求法。5. 會求平面與平面、平面與直線、直線與直線之間的夾角,并會利用平面、直線的相互關(guān)系(平行、垂直、相交等)解決有關(guān)問題。6. 會求空間兩點間的距離、點到直線的距離以及點到平面的距離。7. 了解空間曲線方程和曲面方程的概念。8. 了解空間曲線的參數(shù)方程和一般方程。了解空間曲線在坐標(biāo)平面上的投影,并會求其方程。9. 了解常用二次曲面的方程、圖形及其截痕,會求以坐標(biāo)軸為旋轉(zhuǎn)軸的旋轉(zhuǎn)曲面及母線平行于坐標(biāo)軸的柱面方程。(五)多元函數(shù)微分學(xué)考試內(nèi)容多元函數(shù)的概念 二元函數(shù)的幾何意義 二元函數(shù)的極限和連續(xù) 有界閉區(qū)域上多元連續(xù)函數(shù)的性質(zhì) 多元函數(shù)偏導(dǎo)數(shù)和全微分的概念及求法 全微分存在的必要條件和充分條件 多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法 高階偏導(dǎo)數(shù)的求法 空間曲線的切線和法平面 曲面的切平面和法線 方向?qū)?shù)和梯度 二元函數(shù)的泰勒公式 多元函數(shù)的極值和條件極值 拉格朗日乘數(shù)法 多元函數(shù)的最大值、最小值及其簡單應(yīng)用 全微分在近似計算中的應(yīng)用考試要求1. 理解多元函數(shù)的概念、理解二元函數(shù)的幾何意義。2. 理解二元函數(shù)的極限與連續(xù)性的概念及基本運算性質(zhì),了解二元函數(shù)累次極限和極限的關(guān)系 會判斷二元函數(shù)在已知點處極限的存在性和連續(xù)性 了解有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì)。3. 理解多元函數(shù)偏導(dǎo)數(shù)和全微分的概念 了解二元函數(shù)可微、偏導(dǎo)數(shù)存在及連續(xù)的關(guān)系,會求偏導(dǎo)數(shù)和全微分,了解二元函數(shù)兩個混合偏導(dǎo)數(shù)相等的條件 了解全微分存在的必要條件和充分條件,了解全微分形式的不變性。4. 熟練掌握多元復(fù)合函數(shù)偏導(dǎo)數(shù)的求法。5. 熟練掌握隱函數(shù)的求導(dǎo)法則。6. 理解方向?qū)?shù)與梯度的概念并掌握其計算方法。7. 理解曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程。8. 了解二元函數(shù)的二階泰勒公式。9. 理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值、最小值,并會解決一些簡單的應(yīng)用問題。10. 了解全微分在近似計算中的應(yīng)用(六)多元函數(shù)積分學(xué)考試內(nèi)容二重積分、三重積分的概念及性質(zhì) 二重積分與三重積分的計算和應(yīng)用 兩類曲線積分的概念、性質(zhì)及計算 兩類曲線積分之間的關(guān)系 格林(Green)公式 平面曲線積分與路徑無關(guān)的條件 已知全微分求原函數(shù) 兩類曲面積分的概念、性質(zhì)及計算 兩類曲面積分之間的關(guān)系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及計算 曲線積分和曲面積分的應(yīng)用考試要求1. 理解二重積分、三重積分的概念,掌握重積分的性質(zhì)。2. 熟練掌握二重積分的計算方法(直角坐標(biāo)、極坐標(biāo)),會計算三重積分(直角坐標(biāo)、柱面坐標(biāo)、球面坐標(biāo)),掌握二重積分的換元法。3. 理解兩類曲線積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關(guān)系。熟練掌握計算兩類曲線積分的方法。4. 熟練掌握格林公式,會利用它求曲線積分。掌握平面曲線積分與路徑無關(guān)的條件。會求全微分的原函數(shù)。5. 理解兩類曲面積分的概念,了解兩類曲面積分的性質(zhì)及兩類曲面積分的關(guān)系。熟練掌握計算兩類曲面積分的方法。6. 掌握高斯公式和斯托克斯公式,會利用它們計算曲面積分和曲線積分。7. 了解散度、旋度的概念,并會計算。8. 了解含參變量的積分和萊布尼茨公式。9. 會用重積分、曲線積分及曲面積分求一些幾何量與物理量(平面圖形的面積、曲面的面積、物體的體積、曲線的弧長、物體的質(zhì)量、重心、轉(zhuǎn)動慣量、引力、功及流量等)。(七)無窮級數(shù)考試內(nèi)容常數(shù)項級數(shù)及其收斂與發(fā)散的概念 收斂級數(shù)的和的概念 級數(shù)的基本性質(zhì)與收斂的必要條件 幾何級數(shù)與p級數(shù)及其收斂性 正項級數(shù)收斂性的判別法 交錯級數(shù)與萊布尼茨定理 任意項級數(shù)的絕對收斂與條件收斂 函數(shù)項級數(shù)的收斂域、和函數(shù)的概念 冪級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域 冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì) 簡單冪級數(shù)的和函數(shù)的求法 泰勒級數(shù) 初等函數(shù)的冪級數(shù)展開式 函數(shù)的冪級數(shù)展開式在近似計算中的應(yīng)用 函數(shù)的傅里葉(Fourier)系數(shù)與傅里葉級數(shù) 狄利克雷(Dirichlet)定理 函數(shù)在[l,l]上的傅里葉級數(shù) 函數(shù)在[0,l]上的正弦級數(shù)和余弦級數(shù)。函數(shù)項級數(shù)的一致收斂性??荚囈?. 理解常數(shù)項級數(shù)的收斂、發(fā)散以及收斂級數(shù)的和的概念,掌握級數(shù)的基本性質(zhì)及收斂的必要條件2. 掌握幾何級數(shù)與p級數(shù)的收斂與發(fā)散情況。3. 熟練掌握正項級數(shù)收斂性的各種判別法。4. 熟練掌握交錯級數(shù)的萊布尼茨判別法。5. 理解任意項級數(shù)的絕對收斂與條件收斂的概念,以及絕對收斂與條件收斂的關(guān)系。6. 了解函數(shù)項級數(shù)的收斂域及和函數(shù)的概念。7. 理解冪級數(shù)的收斂域、收斂半徑的概念,并掌握冪級數(shù)的收斂半徑及收斂域的求法。8. 了解冪級數(shù)在其收斂區(qū)間內(nèi)的一些基本性質(zhì)(和函數(shù)的連續(xù)性、逐項微分和逐項積分),會求一些冪級數(shù)在收斂區(qū)間內(nèi)的和函數(shù),并會由此求出某些數(shù)項級數(shù)的和。9. 了解函數(shù)展開為泰勒級數(shù)的充分必要條件。10. 掌握一些常見函數(shù)如ex、sin x、cos x、ln(1+x)和(1+x)α等的麥克勞林展開式,會用它們將一些簡單函數(shù)間接展開成冪級數(shù)。11. 會利用函數(shù)的冪級數(shù)展開式進(jìn)行近似計算。,會將定義在[l,l]上的函數(shù)展開為傅里葉級數(shù),會將定義在[0,l]上的函數(shù)展開為正弦級數(shù)與余弦級數(shù),會將周期為2l的函數(shù)展開為傅里葉級數(shù)。13. 了解函數(shù)項級數(shù)的一致收斂性及一致收斂的函數(shù)項級數(shù)的性質(zhì),會判斷函數(shù)項級數(shù)的一致收斂性。(八)常
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1