【總結(jié)】謝謝觀看Thankyouforwatching!
2025-06-13 20:04
【總結(jié)】即使爬到最高的山上,一次也只能腳踏實(shí)地地邁一步。
2024-12-08 03:09
【總結(jié)】4二次函數(shù)的應(yīng)用第二章二次函數(shù)課堂達(dá)標(biāo)素養(yǎng)提升第二章二次函數(shù)第1課時(shí)最大面積問題課堂達(dá)標(biāo)一、選擇題第1課時(shí)最大面積問題1.2022·南通一模為搞好環(huán)保,某公司準(zhǔn)備修建一個(gè)長方體的污水處理池,矩形池底的周長為100m,則池底的最大面積是()
2025-06-16 16:42
【總結(jié)】第二章二次函數(shù)二次函數(shù)的圖象與性質(zhì)知識點(diǎn)1二次函數(shù)y=a(x-h)2(a≠0)的圖象與性質(zhì)y=-2(x-3)2的頂點(diǎn)坐標(biāo)和對稱軸分別是(B)A.(-3,0),直線x=-3B.(3,0),直線x=3C.(0,-3),直線x=-3D.(0,3),直線x=-3
2025-06-18 00:39
【總結(jié)】第二章二次函數(shù)二次函數(shù)的圖象與性質(zhì)知識點(diǎn)1二次函數(shù)y=a(x-h)2+k(a≠0)的圖象與性質(zhì)y=-(x-1)2+2的圖象與性質(zhì),下列說法正確的是(B)x=1,最小值是2x=1,最大值是2x=-1,最小值是2x=-1,最大值是2y=-4(x+5)2+3的說法:①頂
2025-06-18 00:33
【總結(jié)】2二次函數(shù)的圖象與性質(zhì)第4課時(shí)些數(shù)學(xué)問題.y=ax2+bx+c的圖象特征,會(huì)用配方法求其對稱軸、頂點(diǎn)坐標(biāo)公式.、對稱軸和頂點(diǎn)坐標(biāo).(1)y=2(x-3)2-5(2)y=-(x+1)2(3)y=3(x+4)2+2移得到的?【解析】1.(1)開口:向上,對稱軸:直線x=3,頂點(diǎn)坐標(biāo)(
2025-06-15 03:00
【總結(jié)】2二次函數(shù)的圖象與性質(zhì)第3課時(shí)oyxy=ax2+bx+c的圖象的作法和性質(zhì)的過程..y=a(x-h)2和y=a(x-h)2+k的圖象,并能理解它與y=ax2的圖象的關(guān)系.理解a,h和k對二次函數(shù)圖象的影響.y=a(x-h)2+k的圖象的開口方向、對稱軸和頂點(diǎn)坐標(biāo).
2025-06-15 02:53
【總結(jié)】2二次函數(shù)的圖象與性質(zhì)第3課時(shí)【基礎(chǔ)梳理】y=a(x-h)2的性質(zhì)其對稱軸是x=__,頂點(diǎn)坐標(biāo)是______.h(h,0)y=a(x-h)2與y=ax2的關(guān)系它們_____相同,只是_____不同.當(dāng)h0時(shí),拋物線y=ax2向___平移h個(gè)單位,得到y(tǒng)=a(x-h)2;當(dāng)h0時(shí),拋
2025-06-12 12:32
【總結(jié)】2二次函數(shù)的圖象與性質(zhì)第2課時(shí)的圖象,并能夠比較它們2yax?2(0)yaxca???ac和與對二次函數(shù)圖象的影響.的圖象的異同,理解2yax?2(0)???yaxca和圖象的開口方向、對稱軸、頂點(diǎn)坐標(biāo).函數(shù)y=x2y=-x
【總結(jié)】2二次函數(shù)的圖象與性質(zhì)第1課時(shí)【基礎(chǔ)梳理】二次函數(shù)y=x2與y=-x2的圖象與性質(zhì)函數(shù)y=x2y=-x2圖象開口方向__________向上向下函數(shù)y=x2y=-x2頂點(diǎn)坐標(biāo)______________對稱軸y軸y軸函數(shù)變化當(dāng)x&g
2025-06-12 12:36
【總結(jié)】2二次函數(shù)的圖象與性質(zhì)第4課時(shí)【基礎(chǔ)梳理】y=ax2+bx+c的對稱軸與頂點(diǎn)坐標(biāo)二次函數(shù)y=ax2+bx+c的圖象是一條_______,對稱軸是直線x=____,頂點(diǎn)坐標(biāo)是___________.拋物線b2a?2b4acb(,)2a4a??y=ax2+bx+c的圖象和性質(zhì)(1)當(dāng)a&
2025-06-21 02:27
【總結(jié)】二次函數(shù)復(fù)習(xí)說一說:通過二次函數(shù)的學(xué)習(xí),你應(yīng)該學(xué)什么?你學(xué)會(huì)了什么?1、理解二次函數(shù)的概念;2、會(huì)用描點(diǎn)法畫出二次函數(shù)的圖象;3、會(huì)用配方法和公式確定拋物線的開口方向,對稱軸,頂點(diǎn)坐標(biāo);4、會(huì)用待定系數(shù)法求二次函數(shù)的解析式;5、能用二次函數(shù)的知識解決生活中的實(shí)際問題及簡單的綜合運(yùn)用。
2024-12-08 05:33
【總結(jié)】章末熱點(diǎn)考向?qū)n}專題一恰當(dāng)選擇確定二次函數(shù)表達(dá)式的方法求二次函數(shù)的解析式時(shí),通常有三種設(shè)法:(1)一般式:y=ax2+bx+c;(2)頂點(diǎn)式:y=a(x-h(huán))2+k;(3)交點(diǎn)式:y=a(x-x1)(x-x2),其中x1、x2是拋物線與x軸交點(diǎn)的橫坐標(biāo).例1:已知二次函數(shù)圖象
2024-12-08 14:25
【總結(jié)】鍥而舍之,朽木不折;鍥而不舍,金石可鏤。
2024-12-07 22:57