【總結(jié)】立體幾何(文)一、知識(shí)要點(diǎn):1、能識(shí)別三視圖所表示的空間幾何體;了解球、棱柱、棱錐、臺(tái)的表面積和體積的計(jì)算公式(不要求記憶公式)。2、理解空間直線、平面位置關(guān)系的定義,并了解如下可以作為推理依據(jù)的公理和定理:◆公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),這條直線上所有的點(diǎn)在此平面內(nèi).◆公理2:過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面(三個(gè)推論).◆公理3:如果兩個(gè)
2025-08-09 16:48
【總結(jié)】第一篇:100測(cè)評(píng)網(wǎng)高中數(shù)學(xué)立體幾何同步練習(xí)§(二) 歡迎登錄100測(cè)評(píng)網(wǎng)進(jìn)行學(xué)習(xí)檢測(cè),有效提高學(xué)習(xí)成績(jī).§ (二)1.選擇題 (1)直線l與平面a內(nèi)的兩條直線都垂直,則直線l與平面a的位置關(guān)系...
2025-10-06 05:29
【總結(jié)】《立體幾何起始課》教學(xué)設(shè)計(jì)北京市三里屯一中劉長(zhǎng)?!窘滩姆治觥?立體幾何是研究三維空間中物體的形狀、大小和位置關(guān)系的一門(mén)數(shù)學(xué)學(xué)科,而三維空間是人們生存發(fā)展的現(xiàn)實(shí)空間.所以,學(xué)習(xí)立體幾何對(duì)我們更好地認(rèn)識(shí)、理解現(xiàn)實(shí)世界,更好地生存與發(fā)展具有重要的意義.本章內(nèi)容是義務(wù)教育階段“空間與圖形”課程的延續(xù)與提高,重點(diǎn)是幫助學(xué)生逐步形成空間想象能力.為了符合學(xué)生的認(rèn)知發(fā)展
2025-04-17 08:12
【總結(jié)】 高中數(shù)學(xué)立體幾何部分錯(cuò)題精選一、選擇題:1.(石莊中學(xué))設(shè)ABCD是空間四邊形,E,F(xiàn)分別是AB,CD的中點(diǎn),則滿(mǎn)足()A共線B共面C不共面D可作為空間基向量正確答案:B錯(cuò)因:學(xué)生把向量看為直線。2.(石莊中學(xué))在正方體ABCD-ABCD,O是底面ABCD的中心,M、N分別是棱DD、DC的中點(diǎn),則直線OM(
2025-01-14 09:02
【總結(jié)】第六講立體幾何新題型【考點(diǎn)透視】(A),對(duì)于異面直線的距離,、直線和平面所成的角、、二面角的平面角、兩個(gè)平行平面間的距離的概念.(B)版.①理解空間向量的概念,掌握空間向量的加法、減法和數(shù)乘.②了解空間向量的基本定理,理解空間向量坐標(biāo)的概念,掌握空間向量的坐標(biāo)運(yùn)算.③掌握空間向量的數(shù)量積的定義及其性質(zhì),掌握用直角坐標(biāo)計(jì)算空間向量數(shù)量積公式.④理解直線的方向向量
2025-08-05 18:17
【總結(jié)】廈門(mén)一中立體幾何專(zhuān)題一、選擇題(10×5′=50′)第1題圖,設(shè)O是正三棱錐P-ABC底面三角形ABC的中心,過(guò)O的動(dòng)平面與P-ABC的三條側(cè)棱或其延長(zhǎng)線的交點(diǎn)分別記為Q、R、S,則(),且最大值與最小值不等,相鄰兩側(cè)面所成的二面角的取值范圍是
2025-04-04 05:03
【總結(jié)】高考文科數(shù)學(xué)立體幾何題型與方法(文科)一、考點(diǎn)回顧1.平面(1)平面的基本性質(zhì):掌握三個(gè)公理及推論,會(huì)說(shuō)明共點(diǎn)、共線、共面問(wèn)題。(2)證明點(diǎn)共線的問(wèn)題,一般轉(zhuǎn)化為證明這些點(diǎn)是某兩個(gè)平面的公共點(diǎn)(依據(jù):由點(diǎn)在線上,線在面內(nèi),推出點(diǎn)在面內(nèi)),這樣,可根據(jù)公理2證明這些點(diǎn)都在這兩個(gè)平面的
2025-01-14 15:13
【總結(jié)】六年級(jí)數(shù)學(xué)集備材料----2009年3月9日關(guān)于小學(xué)數(shù)學(xué)立體幾何圖形教學(xué)的幾點(diǎn)認(rèn)識(shí)全彩鳳幾何知識(shí)作為數(shù)學(xué)基礎(chǔ)知識(shí)的重要組成部分,一直是基礎(chǔ)教育數(shù)學(xué)課程的重要內(nèi)容。掌握必要的形體知識(shí),形成一定的空間觀念,是認(rèn)識(shí)、改造人類(lèi)生存空間的需要。研究表明,兒童時(shí)代是空間知覺(jué)即形體直觀認(rèn)知能力的重要發(fā)展階段。在小學(xué),不失時(shí)機(jī)地學(xué)習(xí)一些幾何初步知識(shí),并在其過(guò)程中形成空間觀念,對(duì)進(jìn)一步學(xué)習(xí)幾何知識(shí)及其
2025-06-07 16:59
【總結(jié)】華夏學(xué)校資料庫(kù)1、已知四邊形是空間四邊形,分別是邊的中點(diǎn)(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。2、如圖,已知空間四邊形中,,是的中點(diǎn)。求證:(1)平面CDE;AEDBC(2)平面平面。
2025-04-04 05:14
【總結(jié)】高中課程復(fù)習(xí)專(zhuān)題——數(shù)學(xué)立體幾何一空間幾何體㈠空間幾何體的類(lèi)型1多面體:由若干個(gè)平面多邊形圍成的幾何體。圍成多面體的各個(gè)多邊形叫做多面體的面,相鄰兩個(gè)面的公共邊叫做多面體的棱,棱與棱的公共點(diǎn)叫做多面體的頂點(diǎn)。2旋轉(zhuǎn)體:把一個(gè)平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱(chēng)為
【總結(jié)】立體幾何復(fù)習(xí)學(xué)案 班級(jí)學(xué)號(hào)姓名 【課前預(yù)習(xí)】 1.已知是兩條不同的直線,是兩個(gè)不同的平面,有下列四個(gè)命題: ①若,且,則;②若,且,則; ③若,且,則;④若,且,則. 則所有正確命題的序號(hào)...
2025-09-30 19:06
【總結(jié)】理科數(shù)學(xué)高考立體幾何大題精選不建系求解1.本小題滿(mǎn)分12分)(注意:在試題卷上作答無(wú)效)如圖,四棱錐S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E為棱SB上的一點(diǎn),平面EDC平面SBC.(Ⅰ)證明:SE=2EB;(Ⅱ)求二面角A-DE-C的大小.2.(本小
2025-04-17 06:43
【總結(jié)】選擇題1.(12年四川卷)如圖,半徑為的半球的底面圓在平面內(nèi),過(guò)點(diǎn)作平面的垂線交半球面于點(diǎn),過(guò)圓的直徑作平面成角的平面與半球面相交,所得交線上到平面的距離最大的點(diǎn)為,該交線上的一點(diǎn)滿(mǎn)足,則、兩點(diǎn)間的球面距離為()A.B.C.D.2.(12年廣東卷)某幾何體的三視圖如圖1所示,它的體積為(
2025-01-14 14:09
【總結(jié)】高中數(shù)學(xué)精講精練第七章立體幾何初步【知識(shí)圖解】【方法點(diǎn)撥】立體幾何研究的是現(xiàn)實(shí)空間,認(rèn)識(shí)空間圖形,可以培養(yǎng)學(xué)生的空間想象能力、推理論證能力、運(yùn)用圖形語(yǔ)言進(jìn)行交流的能力以及幾何直觀能力??臻g的元素是點(diǎn)、線、面、體,對(duì)于線線、線面、面面的位置關(guān)系著重研究它們之間的平行與垂直關(guān)系,幾何體著重研究棱柱、棱錐和球。在復(fù)習(xí)時(shí)我們要以下幾點(diǎn):1.注意
2025-08-20 20:20
【總結(jié)】1基礎(chǔ)題題庫(kù)三立體幾何201..已知過(guò)球面上A、B、C三點(diǎn)的截面和球心的距離等于球半徑的一半,且AB=BC=AC=2,求球的體積。解析:過(guò)A、B、C三點(diǎn)截面的小圓的半徑就是正△ABC的外接圓的半徑332,它是Rt△中060所對(duì)的邊,其斜邊為34,即球的半徑為34,∴?81256?V;202.正
2025-08-20 20:22