【總結(jié)】精品資源立體幾何步步高訓(xùn)練(10)立體幾何基礎(chǔ)知識(shí)專(zhuān)題(2)立體幾何基礎(chǔ)知識(shí)系列訓(xùn)練(四)計(jì)算問(wèn)題(一)計(jì)算問(wèn)題是立體幾何重要的一部分,應(yīng)該注意的是:立體幾何的計(jì)算是以證明為基礎(chǔ)的,我們計(jì)算問(wèn)題所說(shuō)的"兩步走"的第一步,就是要找出要求的(或已知的)角或距離,而找的過(guò)程,就是逐步通過(guò)已知條件證明某個(gè)角(或距離)就是所求的角(或距離).
2025-03-25 06:44
【總結(jié)】精品資源立體幾何步步高訓(xùn)練(4)直線與平面平行、垂直專(zhuān)題,E為VB的中點(diǎn),O為AC,BD的交點(diǎn),求證:EO‖平面VCD2.在三棱柱ABC-A1B1C1中,已知M,N分別為A1B1,BC的中點(diǎn),求證:平面AA1C1C.,ADEF都是正方形且BM=AN求證MN||平面CDE
【總結(jié)】精品資源立體幾何步步高訓(xùn)練(7)兩個(gè)平面的位置關(guān)系【考點(diǎn)指津】掌握兩平面平行、垂直的判定和性質(zhì),并用以解決有關(guān)問(wèn)題.【知識(shí)在線】1.若平面∥平面,直線點(diǎn),則在內(nèi)過(guò)點(diǎn)的所有直線中()
【總結(jié)】精品資源立體幾何步步高訓(xùn)練(2)空間兩條直線的位置關(guān)系【考點(diǎn)指津】1.了解空間兩條直線的位置關(guān)系,掌握兩條直線平行與垂直的判定和性質(zhì).2.掌握兩條直線所成的角和距離的概念(對(duì)于異面直線的距離,只要求會(huì)利用給出的公垂線計(jì)算距離).【知識(shí)在線】.“直線不相交”是“直線為異面直線”的()
【總結(jié)】精品資源立體幾何步步高訓(xùn)練(3)直線與平面的位置關(guān)系(一)【考點(diǎn)指津】1.了解直線和平面的位置關(guān)系(直線在平面內(nèi),直線與平面相交,直線與平面平行).2.掌握直線與平面平行、直線與平面垂直的判定定理和性質(zhì)定理,并能靈活運(yùn)用它們解題.【知識(shí)在線】1.已知直線及平面具有下列哪個(gè)條件時(shí),成立?答()
【總結(jié)】立體幾何大題訓(xùn)練(1)1、如圖,三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為2的等邊三角形,AA1⊥底面ABC,點(diǎn)E,F(xiàn)分別是棱CC1,BB1上的點(diǎn),且EC=B1F=2FB.(1)證明:平面AEF⊥平面ACC1A1;(2)若AA1=3,求直線AB與平面AEF所成角的正弦值.2、如圖,在四棱錐中,平
2025-03-25 06:43
【總結(jié)】第一篇:立體幾何題證明方法 立體幾何題型與方法 1.平面的基本性質(zhì):掌握三個(gè)公理及推論,會(huì)說(shuō)明共點(diǎn)、共線、共面問(wèn)題。 (1)證明點(diǎn)共線的問(wèn)題,一般轉(zhuǎn)化為證明這些點(diǎn)是某兩個(gè)平面的公共點(diǎn)(依據(jù):由點(diǎn)...
2024-11-15 05:28
【總結(jié)】典型立體幾何題典型例題一例1設(shè)有四個(gè)命題:①底面是矩形的平行六面體是長(zhǎng)方體;②棱長(zhǎng)都相等的直四棱柱是正方體;③有兩條側(cè)棱都垂直于底面一邊的平行六面體是直平行六面體;④對(duì)角線相等的平行六面體是直平行六面體.其中真命題的個(gè)數(shù)是()A.1B.2C.3D.4分析:命題①是假命題.因?yàn)榈?/span>
2025-03-25 12:05
【總結(jié)】1、垂直于同一條直線的兩條直線一定A、平行B、相交C、異面D、以上都有可能2、a,b,c表示直線,M表示平面,給出下列四個(gè)命題:①若a∥M,b∥M,則a∥b;②若bM,a∥b,則a∥M;③若a⊥c,b⊥c,則a∥b;④若a⊥M,b⊥M,則a∥ A、0個(gè) B、1個(gè)
2025-03-25 02:03
【總結(jié)】1、已知正方體,是底對(duì)角線的交點(diǎn).求證:(1)C1O∥面;(2)面.2、正方體中,求證:(1);(2).3、正方體ABCD—A1B1C1D1中.(1)求證:平面A1BD∥平面B1D1C;A1AB1BC1CD1DGEF(2)若E、F分別是AA1,
2025-03-26 05:42
【總結(jié)】廣東高考數(shù)學(xué)真題匯編:立體幾何1、(2011?廣東文數(shù))正五棱柱中,不同在任何側(cè)面且不同在任何底面的兩頂點(diǎn)的連線稱(chēng)為它的對(duì)角線,那么一個(gè)正五棱柱對(duì)角線的條數(shù)共有( ) A、20 B、15C、12 D、101解答:解:由題意正五棱柱對(duì)角線一定為上底面的一個(gè)頂點(diǎn)和下底面的一個(gè)頂點(diǎn)的連線,因?yàn)椴煌谌魏蝹?cè)面內(nèi),故從一個(gè)頂點(diǎn)出發(fā)的對(duì)角線有2條.正五棱柱對(duì)角線的條
2025-04-07 21:28
【總結(jié)】第一篇:立體幾何證明 1、(14分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).(1)求證:EF∥平面CB1D1; (2)求證:平面CAA1C1⊥平面CB1D1. A...
2024-11-12 12:11
【總結(jié)】立體幾何復(fù)習(xí)講義【基礎(chǔ)回扣】1.平面平面的基本性質(zhì):掌握三個(gè)公理及推論,會(huì)說(shuō)明共點(diǎn)、共線、共面問(wèn)題。(1)證明點(diǎn)共線的問(wèn)題,一般轉(zhuǎn)化為證明這些點(diǎn)是某兩個(gè)平面的公共點(diǎn)(依據(jù):由點(diǎn)在線上,線在面內(nèi),推出點(diǎn)在面內(nèi)),這樣可根據(jù)公理2證明這些點(diǎn)都在這兩個(gè)平面的公共直線上。(2)證明共點(diǎn)問(wèn)題,一般是先證
2025-06-07 21:19
【總結(jié)】一、基本概念1.空間向量:在空間內(nèi),我們把具有大小和方向的量叫做向量,用有向線段表示.2.向量的模:向量的大小叫向量的長(zhǎng)度或模.記為|,特別地:?①規(guī)定長(zhǎng)度為0的向量為零向量,記作;?②模為1的向量叫做單位向量;3.相等的向量:兩個(gè)模相等且方向相同的向量稱(chēng)為相等的向量.4.負(fù)向量:兩個(gè)模相等且方向相反的向量是互為負(fù)向量.如的相反向量記為-.
2025-04-17 08:18
【總結(jié)】一輪復(fù)習(xí)之立體幾何姓名一輪復(fù)習(xí)之立體幾何姓名1.已知三棱錐中,為等腰直角三角形,,設(shè)點(diǎn)為中點(diǎn),點(diǎn)為中點(diǎn),點(diǎn)為上一點(diǎn),且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
2025-07-24 12:16