【總結(jié)】第一篇:《基本不等式》教案 《基本不等式》教學(xué)設(shè)計(jì) 教材:人教版高中數(shù)學(xué)必修5第三章 一、教學(xué)目標(biāo) 1.通過兩個(gè)探究實(shí)例,引導(dǎo)學(xué)生從幾何圖形中獲得兩個(gè)基本不等式,了解基本不等式的幾何背景,體會...
2024-10-28 23:20
【總結(jié)】邊城高級中學(xué)張秀洲1、了解兩個(gè)正數(shù)的算術(shù)平均數(shù)與幾何平均數(shù).2、理解定理1和定理2(基本不等式).3、掌握用基本不等式求一些函數(shù)的最值及實(shí)際的應(yīng)用問題.自學(xué)教材P5—P8解決下列問題二、掌握用基本不等式求一些函數(shù)的最值及實(shí)際的應(yīng)用問題.三、《教材》習(xí)題第5、6、7、8、9、10、11題.
2025-07-24 03:13
【總結(jié)】第一篇:基本不等式教學(xué)設(shè)計(jì) 《基本不等式》教學(xué)設(shè)計(jì) 開江中學(xué)魏江蘭 目標(biāo)分析 依據(jù)《新課程標(biāo)準(zhǔn)》對《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實(shí)際情況,特確定如下目標(biāo): 1、知識與能力目標(biāo):理解掌握...
2024-10-24 16:35
【總結(jié)】第一篇:基本不等式的證明 重要不等式及其應(yīng)用教案 教學(xué)目的 (1)使學(xué)生掌握基本不等式a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時(shí)取“=”號)和a3+b3+c3≥3abc(a、b、c∈R+,...
2024-10-27 20:07
【總結(jié)】高二數(shù)學(xué)(必修五)多媒體課件基本不等式的證明【問題1】把一個(gè)物體放在天平的一個(gè)盤子上,在另一個(gè)盤子上放砝碼使天平平衡,稱得物體的質(zhì)量為,天平的兩臂長略有不同(其它因素不計(jì)),那么并非實(shí)際質(zhì)量.不過,我們可作第二次測量:把物體調(diào)換到天平的另一盤上,此時(shí)稱得物體的質(zhì)量為的質(zhì)量呢?:
2025-08-05 03:53
【總結(jié)】—求函數(shù)的最值1、如果a,b是正數(shù),那么(當(dāng)且僅當(dāng)a=b時(shí)取“=”號)(均值不等式)abba??2一、基本不等式回顧ab2)2(ba??2abab??2、公式變形:特別地,a=b=0時(shí)也成立(當(dāng)a、b∈R成立嗎?)
2024-11-03 19:19
【總結(jié)】一、設(shè)疑引入等關(guān)系嗎?找出一些相等關(guān)系或不能在這個(gè)圖中數(shù)學(xué)家大會的會標(biāo),你)0)(2(?2,.122222????????baabbabaabbaba你能證明嗎時(shí),等號成立當(dāng)且僅當(dāng)我們有一般地,對于任意實(shí)數(shù)二、新知探究稱之為基本不等式通常寫作則若特別地,22,0,0,.2baababb
2025-08-05 05:43
【總結(jié)】例.0,0(1)10,___________(2)10,___________xyxyxyxyxy??????如果那么如果那么25?210?最值定理:(1)和定--積最大.(2)積定--和最小.()xyfd
2025-08-05 04:40
【總結(jié)】基本不等式及應(yīng)用一、考綱要求:.2.會用基本不等式解決簡單的最大(小)值問題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號成立的條件≤a0,b0a=b三、常用的幾個(gè)重要不等式(1)a2+b2≥2ab(a,b∈R)(2)ab≤()2(a,b∈R)(3)≥()2(a,
2025-04-16 22:38
【總結(jié)】基本不等式應(yīng)用一.基本不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”);若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)
2025-03-24 03:55
【總結(jié)】第一篇:基本不等式說課 基本不等式 一、教材分析 本節(jié)課是人教版高中數(shù)學(xué)必修5中第三章第4節(jié)的內(nèi)容。二元均值不等式。這是在學(xué)習(xí)了“不等式的性質(zhì)”、“不等式的解法”及“線性規(guī)劃”的基礎(chǔ)上對不等...
2024-11-15 02:54
【總結(jié)】第一篇:基本不等式教學(xué)設(shè)計(jì) 基本不等式 一、教學(xué)設(shè)計(jì)理念: 注重學(xué)生自主、合作、探究學(xué)習(xí),、教學(xué)設(shè)計(jì)思路: 這節(jié)課的目標(biāo)定位分為三個(gè)層面: 第一層面:知識與技能層面,①了解兩個(gè)正數(shù)的算術(shù)平均...
2024-11-14 13:44
【總結(jié)】基本不等式在求最值中的應(yīng)用與完善楊亞軍函數(shù)的最值是函數(shù)這一章節(jié)中很重要的部分,它的重要性不僅在題型的多樣、方法的靈活上,更主要的是其在實(shí)際生活及生產(chǎn)實(shí)踐中的應(yīng)用。高考應(yīng)用題幾乎都與最值問題有關(guān),,才能更好地去解決實(shí)際應(yīng)用問題。一、基本不等式的內(nèi)容及使用要點(diǎn)1、二元基本不等式:①a,b∈R時(shí),a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時(shí)“=”號成立);②a,b≥0時(shí),a+b
2025-08-05 01:31
【總結(jié)】基本不等式作業(yè)(一)1.下列不等式成立的是()A.a(chǎn)bba??2B.abba???2C.21??xxD.2122??xx2.若a∈R,下列不等式恒成立的是()+1aB.1112??aC.a2+96aD.lg(a2+1
2024-11-23 13:45
【總結(jié)】(第一課時(shí))導(dǎo)學(xué)案【課程標(biāo)準(zhǔn)要求】①探索并了解基本不等式的證明過程.②會用基本不等式解決簡單的最大(?。┲祮栴}.【學(xué)習(xí)目標(biāo)】①經(jīng)歷由幾何圖形抽象出重要不等式的過程,會用比較法證明重要不等式;②經(jīng)歷由重要不等式代換獲得基本不等式的過程,知道與的相等與不等關(guān)系及等號成立的條件;矚慫潤厲釤瘞睞櫪廡賴賃軔朧礙鱔絹。③經(jīng)歷從不同角度探索基本不等式的證明過程,加深認(rèn)識基本不等
2025-04-16 12:23