freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

最新中考數(shù)學(xué)復(fù)習(xí)知識點總結(jié)(編輯修改稿)

2025-05-14 01:53 本頁面
 

【文章內(nèi)容簡介】 順序連接起來,并向上或向下延伸,就得到二次函數(shù)的圖像。當(dāng)拋物線與x軸只有一個交點或無交點時,描出拋物線與y軸的交點C及對稱點D。由C、M、D三點可粗略地畫出二次函數(shù)的草圖。如果需要畫出比較精確的圖像,可再描出一對對稱點A、B,然后順次連接五點,畫出二次函數(shù)的圖像。考點二、二次函數(shù)的解析式 (10~16分)二次函數(shù)的解析式有三種形式:(1)一般式:(2)頂點式:(3)當(dāng)拋物線與x軸有交點時,即對應(yīng)二次好方程有實根和存在時,根據(jù)二次三項式的分解因式,二次函數(shù)可轉(zhuǎn)化為兩根式。如果沒有交點,則不能這樣表示??键c三、二次函數(shù)的最值 (10分)如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當(dāng)時。如果自變量的取值范圍是,那么,首先要看是否在自變量取值范圍內(nèi),若在此范圍內(nèi),則當(dāng)x=時,;若不在此范圍內(nèi),則需要考慮函數(shù)在范圍內(nèi)的增減性,如果在此范圍內(nèi),y隨x的增大而增大,則當(dāng)時,當(dāng)時,;如果在此范圍內(nèi),y隨x的增大而減小,則當(dāng)時,當(dāng)時??键c四、二次函數(shù)的性質(zhì) (6~14分) 二次函數(shù)的性質(zhì)函數(shù)二次函數(shù)圖像a0a0 y 0 x y 0 x 性質(zhì)(1)拋物線開口向上,并向上無限延伸;(2)對稱軸是x=,頂點坐標(biāo)是(,);(3)在對稱軸的左側(cè),即當(dāng)x時,y隨x的增大而減小;在對稱軸的右側(cè),即當(dāng)x時,y隨x的增大而增大,簡記左減右增;(4)拋物線有最低點,當(dāng)x=時,y有最小值,(1)拋物線開口向下,并向下無限延伸;(2)對稱軸是x=,頂點坐標(biāo)是(,);(3)在對稱軸的左側(cè),即當(dāng)x時,y隨x的增大而增大;在對稱軸的右側(cè),即當(dāng)x時,y隨x的增大而減小,簡記左增右減;(4)拋物線有最高點,當(dāng)x=時,y有最大值,二次函數(shù)中,的含義:表示開口方向:0時,拋物線開口向上 0時,拋物線開口向下與對稱軸有關(guān):對稱軸為x=表示拋物線與y軸的交點坐標(biāo):(0,)二次函數(shù)與一元二次方程的關(guān)系一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標(biāo)。因此一元二次方程中的,在二次函數(shù)中表示圖像與x軸是否有交點。當(dāng)0時,圖像與x軸有兩個交點;當(dāng)=0時,圖像與x軸有一個交點;當(dāng)0時,圖像與x軸沒有交點。補充:兩點間距離公式(當(dāng)遇到?jīng)]有思路的題時,可用此方法拓展思路,以尋求解題方法) y如圖:點A坐標(biāo)為(x1,y1)點B坐標(biāo)為(x2,y2)則AB間的距離,即線段AB的長度為 A 0 x B函數(shù)平移規(guī)律(中考試題中,只占3分,但掌握這個知識點,對提高答題速度有很大幫助,可以大大節(jié)省做題的時間)左加右減、上加下減第八章 圖形的初步認(rèn)識考點一、直線、射線和線段 (3分) 幾何圖形從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。立體圖形:有些幾何圖形的各個部分不都在同一平面內(nèi),它們是立體圖形。平面圖形:有些幾何圖形的各個部分都在同一平面內(nèi),它們是平面圖形。點、線、面、體(1)幾何圖形的組成點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。線:面和面相交的地方是線,分為直線和曲線。面:包圍著體的是面,分為平面和曲面。體:幾何體也簡稱體。(2)點動成線,線動成面,面動成體。直線的概念一根拉得很緊的線,就給我們以直線的形象,直線是直的,并且是向兩方無限延伸的。射線的概念直線上一點和它一旁的部分叫做射線。這個點叫做射線的端點。線段的概念直線上兩個點和它們之間的部分叫做線段。這兩個點叫做線段的端點。點、直線、射線和線段的表示在幾何里,我們常用字母表示圖形。一個點可以用一個大寫字母表示。一條直線可以用一個小寫字母表示。一條射線可以用端點和射線上另一點來表示。一條線段可用它的端點的兩個大寫字母來表示。注意:(1)表示點、直線、射線、線段時,都要在字母前面注明點、直線、射線、線段。(2)直線和射線無長度,線段有長度。(3)直線無端點,射線有一個端點,線段有兩個端點。(4)點和直線的位置關(guān)系有線面兩種:①點在直線上,或者說直線經(jīng)過這個點。②點在直線外,或者說直線不經(jīng)過這個點。直線的性質(zhì)(1)直線公理:經(jīng)過兩個點有一條直線,并且只有一條直線。它可以簡單地說成:過兩點有且只有一條直線。(2)過一點的直線有無數(shù)條。(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。(4)直線上有無窮多個點。(5)兩條不同的直線至多有一個公共點。線段的性質(zhì)(1)線段公理:所有連接兩點的線中,線段最短。也可簡單說成:兩點之間線段最短。(2)連接兩點的線段的長度,叫做這兩點的距離。(3)線段的中點到兩端點的距離相等。(4)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。線段垂直平分線的性質(zhì)定理及逆定理垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線。線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等。逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上??键c二、角 (3分)角的相關(guān)概念有公共端點的兩條射線組成的圖形叫做角,這個公共端點叫做角的頂點,這兩條射線叫做角的邊。當(dāng)角的兩邊在一條直線上時,組成的角叫做平角。平角的一半叫做直角;小于直角的角叫做銳角;大于直角且小于平角的角叫做鈍角。如果兩個角的和是一個直角,那么這兩個角叫做互為余角,其中一個角叫做另一個角的余角。如果兩個角的和是一個平角,那么這兩個角叫做互為補角,其中一個角叫做另一個角的補角。角的表示角可以用大寫英文字母、阿拉伯?dāng)?shù)字或小寫的希臘字母表示,具體的有一下四種表示方法:①用數(shù)字表示單獨的角,如∠1,∠2,∠3等。②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。注意:用三個大寫英文字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側(cè)。角的度量角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“176?!北硎?,1度記作“1176?!?,n度記作“n176?!?。把1176。的角60等分,每一份叫做1分的角,1分記作“1’”。把1’ 的角60等分,每一份叫做1秒的角,1秒記作“1””。1176。=60’=60”角的性質(zhì)(1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。(2)角的大小可以度量,可以比較(3)角可以參與運算。角的平分線及其性質(zhì)一條射線把一個角分成兩個相等的角,這條射線叫做這個角的平分線。角的平分線有下面的性質(zhì)定理:(1)角平分線上的點到這個角的兩邊的距離相等。(2)到一個角的兩邊距離相等的點在這個角的平分線上??键c三、相交線 (3分)相交線中的角兩條直線相交,可以得到四個角,我們把兩條直線相交所構(gòu)成的四個角中,有公共頂點但沒有公共邊的兩個角叫做對頂角。我們把兩條直線相交所構(gòu)成的四個角中,有公共頂點且有一條公共邊的兩個角叫做臨補角。臨補角互補,對頂角相等。直線AB,CD與EF相交(或者說兩條直線AB,CD被第三條直線EF所截),構(gòu)成八個角。其中∠1與∠5這兩個角分別在AB,CD的上方,并且在EF的同側(cè),像這樣位置相同的一對角叫做同位角;∠3與∠5這兩個角都在AB,CD之間,并且在EF的異側(cè),像這樣位置的兩個角叫做內(nèi)錯角;∠3與∠6在直線AB,CD之間,并側(cè)在EF的同側(cè),像這樣位置的兩個角叫做同旁內(nèi)角。垂線兩條直線相交所成的四個角中,有一個角是直角時,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。直線AB,CD互相垂直,記作“AB⊥CD”(或“CD⊥AB”),讀作“AB垂直于CD”(或“CD垂直于AB”)。垂線的性質(zhì):性質(zhì)1:過一點有且只有一條直線與已知直線垂直。性質(zhì)2:直線外一點與直線上各點連接的所有線段中,垂線段最短。簡稱:垂線段最短??键c四、平行線 (3~8分) 平行線的概念在同一個平面內(nèi),不相交的兩條直線叫做平行線。平行用符號“∥”表示,如“AB∥CD”,讀作“AB平行于CD”。同一平面內(nèi),兩條直線的位置關(guān)系只有兩種:相交或平行。注意:(1)平行線是無限延伸的,無論怎樣延伸也不相交。(2)當(dāng)遇到線段、射線平行時,指的是線段、射線所在的直線平行。平行線公理及其推論平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行。推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。平行線的判定平行線的判定公理:兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。簡稱:同位角相等,兩直線平行。平行線的兩條判定定理:(1)兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么兩直線平行。簡稱:內(nèi)錯角相等,兩直線平行。(2)兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么兩直線平行。簡稱:同旁內(nèi)角互補,兩直線平行。補充平行線的判定方法:(1)平行于同一條直線的兩直線平行。(2)垂直于同一條直線的兩直線平行。(3)平行線的定義。平行線的性質(zhì)(1)兩直線平行,同位角相等。(2)兩直線平行,內(nèi)錯角相等。(3)兩直線平行,同旁內(nèi)角互補。考點五、命題、定理、證明 (3~8分) 命題的概念判斷一件事情的語句,叫做命題。理解:命題的定義包括兩層含義:(1)命題必須是個完整的句子;(2)這個句子必須對某件事情做出判斷。命題的分類(按正確、錯誤與否分) 真命題(正確的命題)命題 假命題(錯誤的命題)所謂正確的命題就是:如果題設(shè)成立,那么結(jié)論一定成立的命題。所謂錯誤的命題就是:如果題設(shè)成立,不能證明結(jié)論總是成立的命題。公理人們在長期實踐中總結(jié)出來的得到人們公認(rèn)的真命題,叫做公理。定理用推理的方法判斷為正確的命題叫做定理。證明判斷一個命題的正確性的推理過程叫做證明。證明的一般步驟(1)根據(jù)題意,畫出圖形。(2)根據(jù)題設(shè)、結(jié)論、結(jié)合圖形,寫出已知、求證。(3)經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程。考點六、投影與視圖 (3分) 投影投影的定義:用光線照射物體,在地面上或墻壁上得到的影子,叫做物體的投影。平行投影:由平行光線(如太陽光線)形成的投影稱為平行投影。中心投影:由同一點發(fā)出的光線所形成的投影稱為中心投影。視圖當(dāng)我們從某一角度觀察一個實物時,所看到的圖像叫做物體的一個視圖。物體的三視圖特指主視圖、俯視圖、左視圖。主視圖:在正面內(nèi)得到的由前向后觀察物體的視圖,叫做主視圖。俯視圖:在水平面內(nèi)得到的由上向下觀察物體的視圖,叫做俯視圖。左視圖:在側(cè)面內(nèi)得到的由左向右觀察物體的視圖,叫做左視圖,有時也叫做側(cè)視圖。第九章 三角形考點一、三角形 (3~8分) 三角形的概念由不在同意直線上的三條線段首尾順次相接所組成的圖形叫做三角形。組成三角形的線段叫做三角形的邊;相鄰兩邊的公共端點叫做三角形的頂點;相鄰兩邊所組成的角叫做三角形的內(nèi)角,簡稱三角形的角。三角形中的主要線段(1)三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點間的線段叫做三角形的角平分線。(2)在三角形中,連接一個頂點和它對邊的中點的線段叫做三角形的中線。(3)從三角形一個頂點向它的對邊做垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。三角形的穩(wěn)定性三角形的形狀是固定的,三角形的這個性質(zhì)叫做三角形的穩(wěn)定性。三角形的這個性質(zhì)在生產(chǎn)生活中應(yīng)用很廣,需要穩(wěn)定的東西一般都制成三角形的形狀。三角形的特性與表示三角形有下面三個特性:(1)三角形有三條線段(2)三條線段不在同一直線上 三角形是封閉圖形(3)首尾順次相接三角形用符號“”表示,頂點是A、B、C的三角形記作“ABC”,讀作“三角形ABC”。三角形的分類三角形按邊的關(guān)系分類如下: 不等邊三角形三角形 底和腰不相等的等腰三角形 等腰三角形 等邊三角形三角形按角的關(guān)系分類如下: 直角三角形(有一個角為直角的三角形)三角形 銳角三角形(三個角都是銳角的三角形) 斜三角形 鈍角三角形(有一個角為鈍角的三角形)把邊和角聯(lián)系在一起,我們又有一種特殊的三角形:等腰直角三角形。它是兩條直角邊相等的直角三角形。三角形的三邊關(guān)系定理及推
點擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1