freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

新高一分班考試1資料數(shù)學(xué)第一講平面幾何之直線型學(xué)生版(編輯修改稿)

2025-05-01 04:37 本頁面
 

【文章內(nèi)容簡介】 平行線構(gòu)造成比例線段,利用了“X”型圖的基本模型.三、相似證明中的面積法面積法主要是將面積的比,和線段的比進(jìn)行相互轉(zhuǎn)化來解決問題.常用的面積法基本模型如下:如圖:.如圖:.如圖:.四、相似證明中的基本模型例題精講例題精講【例1】 如圖,內(nèi)有一點,過作各邊的平行線,把分成三個三角形和三個平行四邊形.若三個三角形的面積分別為,則的面積是 .【鞏固】如圖所示,是一個凸六邊形,、分別是直線與、與、 與的交點,、分別是與、與、與的交點,如果,求證:. 【拓展】設(shè)、分別是凸四邊形的邊、上的點,且,求證:直線與之間的夾角等于直線與之間的夾角.【例2】 如圖所示,在中,,為的中點,是邊上的點,求的面積與的面積的兩倍的和. 【鞏固】已知:在中,為的平分線,以為圓心,為半徑的半圓交的延長線于點,交于點,交于點,且.⑴ 求證:⑵ 求的余弦值;⑶ 如果,求的面積. 知識點睛板塊二 梅涅勞斯定理與塞瓦定理梅涅勞斯定理:如果一條直線與的三邊、或其延長線交于、點,那么.,叫梅氏三角形.  證法一:如左圖,過作∵,∴.證法二:如中圖,過作交的延長線于∴,三式相乘即得:.證法三:如右圖,分別過作的垂線,分別交于.則有,所以.梅涅勞斯定理的逆定理:若、分別是的三邊、或其延長線的三點,如果 ,則、三點共線.塞瓦定理:如果的三個頂點與一點的連線、交對邊或其延長線于、如圖,那么.通常稱點為的塞瓦點.證明: ∵直線、分別是、的梅氏線,∴,.兩式相乘即可得:.塞瓦定理的逆定理:如果點、分別在的邊、上或其延長線上,并,那么、相交于一點(
點擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1