freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高性能碳纖維相關(guān)重大問題的基礎(chǔ)研究(編輯修改稿)

2025-04-22 05:44 本頁面
 

【文章內(nèi)容簡介】 性相圖,其中,L,l0和分別為在纖維方向上與噴絲孔之間的距離,纖維在零拉伸率時的松弛時間和在噴絲孔處的無量綱速率。3 耦合溫度場的紡絲流動如何針對高粘彈性液體設(shè)計出孔絲條粗細均勻的噴絲組件,目前仍是對高分子流體動力學(xué)理論的挑戰(zhàn)。PAN基碳纖維在濕紡過程中,由于噴絲頭需要浸入溫度較低如0℃的凝固浴槽中,而經(jīng)過噴絲頭的紡絲原液溫度卻較高,例如75℃,因此紡絲時噴絲頭內(nèi)各點的溫度分布十分不均勻(對于大絲束纖維的紡絲,情況將更為嚴重?。鳳AN原液的流變行為如粘度對溫度的依賴性極大,例如:濃度為13% PAN的粘度在時為泊,在時的粘度為泊。這種由于噴絲頭內(nèi)溫度分布不均勻?qū)е碌脑毫髯冃袨榈牟痪鶆蛐詫乐赜绊懻麄€紡絲工藝,即連續(xù)紡絲的穩(wěn)定性或可紡性(spinnability)。由于擠出噴絲板的原液流變行為直接決定了其彈性回復(fù)所致的張力,這個張力的大小決定了紡絲過程中牽引輥的最大速度,速度越大,原絲的取向程度越高,纖維的直徑越細。因此,擠出噴絲板的原液流變行為的不均勻性,如噴絲頭內(nèi)溫度分布的不均勻?qū)?dǎo)致拉伸粘度的不均勻(文獻結(jié)果表明對于PAN的NaSCN水溶液,拉伸速率對拉伸粘度的影響不大),從而無法得到穩(wěn)定的紡絲速度,即有些絲被拉斷了,而有些絲卻還沒有得到足夠的拉伸并取向,因此最終的原絲的取向度(影響機械性能)和纖維直徑的CV值偏大,并且原絲的斷絲率增大。圖 6 圓柱形孔的噴絲頭示意圖用于計算組件內(nèi)的溫度分布為了計算高粘彈性紡絲液體進入噴絲頭內(nèi)的溫度分布,設(shè)圓柱形噴絲頭的尺寸及坐標示意圖如圖6所示。為圓管半徑,為噴絲頭的長度,圓柱體內(nèi)的溫度分布具有對稱性。假設(shè)高溫的原液進入浸入冰水凝固浴的噴絲組件內(nèi),流體為不可壓縮流,流體粘度和密度不隨溫度變化,則穩(wěn)態(tài)流場中的流體的溫度分布滿足如下的對流擴散方程:             (1)式中為流體密度,為流體熱導(dǎo)率,為圓柱形管內(nèi)流體的速度,通過進入噴絲頭的原液的流率確定。圓柱坐標系中方程(4)表示為:       (2) (a) 未改進的噴絲頭內(nèi)較高溫度原液浸入0℃凝固浴中的溫度分布(處為噴絲板)(c) (a)圖中在不同噴絲頭長度處溫度沿著徑向r的分布,紅色為高溫,藍色為低溫(b) 改進后的圓柱形噴絲頭內(nèi)的溫度分布(處為噴絲板)(d) (b)中在不同噴絲頭長度處溫度沿著徑向r的分布,紅色為高溫,藍色為低溫圖 7 將噴頭模擬為方位對稱的圓柱內(nèi)的溫度分布數(shù)值求解上述偏微分方程,可以預(yù)測各種條件下噴絲頭內(nèi)的溫度分布。如圖7所示,當(dāng)未改進的噴絲頭內(nèi)較高溫度原液浸入約0℃凝固浴時(圖7a和7c),噴絲頭內(nèi)的溫度迅速降低,尤其是在靠近噴絲板()處,并且噴絲板中心區(qū)域溫度高,而外圈溫度低,從而導(dǎo)致出絲不穩(wěn)定且出絲率低。對于經(jīng)過改進后的噴絲頭,靠近噴絲板的溫度分布沿徑向有較大范圍的平臺即恒溫區(qū),如圖7b和7d所示。應(yīng)該看到,我們目前簡化了的計算模型對噴絲組件的改進還十分有限。接下來的研究還應(yīng)包括:考慮流體粘度和密度隨溫度的變化,將原液的流變行為耦合進流場,修正方程(5);結(jié)合Fluent算法,研究噴絲頭內(nèi)PAN原液的粘彈性對流場的影響及噴絲頭內(nèi)的流場分布;研究拉伸、凝固工藝等對噴絲頭內(nèi)的流場及溫度場的影響。通過這些研究可望進一步提高可紡性,從而得到物理機械性能離散度小的高強度碳纖維。4 PAN原液在凝固浴和流動場下的形態(tài)演化PAN原液細絲的固化是一個擴散控制過程,相平衡和相分離動力學(xué)對固化后原絲的結(jié)構(gòu)及物理性質(zhì)有著決定性影響。凝固過程中細絲的微細結(jié)構(gòu)和形態(tài)不僅取決于平均組成,也取決于達到這一組成的路徑。取決于體系中三相之間的相互作用參數(shù)、原液固含量以及凝固浴溫度和拉伸比,原絲形態(tài)的演化是高度受制于過程。深入理解其中的內(nèi)在機理將是提高PAN原絲宏觀性能的關(guān)鍵。相圖是深入了解PAN紡絲過程中相平衡和相分離的重要工具。我們利用上海石化生產(chǎn)的PAN原料,結(jié)合了FloryHuggins理論和實驗測定,構(gòu)造了PAN/溶劑/非溶劑體系的三元相圖,詳細研究PAN分子量、體系溫度等生產(chǎn)中可以調(diào)節(jié)控制的參數(shù)對相圖的影響。同時從實驗出發(fā),輔助以必要的理論推導(dǎo),計算出相圖中的失穩(wěn)分解線。這樣根據(jù)原料液的組成,就可以推測體系的相分離機理,定性地了解纖維內(nèi)部由相分離導(dǎo)致的多相結(jié)構(gòu)特征。這一理論實驗相結(jié)合的方法允許人們方便地考察PAN分子尺寸以及三元體系中各組成間相互作用參數(shù)對凝固浴中相分離過程的影響,并為進一步的形態(tài)演化動力學(xué)研究提供方向性指導(dǎo)。圖 8 上海石化生產(chǎn)的PAN原液的三元相圖After stretchingBefore stretching (a) (b)圖 9 (a) 改進工藝前的原絲在后段拉伸之前的掃描電鏡照片。 (b) 原絲在后段拉伸前后孔隙的變化。PAN原絲性能與其在凝固浴中形成的形態(tài)結(jié)構(gòu)密切相關(guān)。熱力學(xué)上預(yù)測的相分離行為提供的指導(dǎo)需經(jīng)過細致的動力學(xué)調(diào)控才能得以最終實現(xiàn)原絲形態(tài)結(jié)構(gòu)的優(yōu)化。取決于紡絲過程中的加工參數(shù)的控制,相同的原液和凝固浴組成也可能造成各種不同形態(tài)結(jié)構(gòu)的生成。最終的原絲截面可以是圓形或各種非圓形貌,內(nèi)部孔隙的尺寸、數(shù)量及分布也將隨凝固成形條件而發(fā)生顯著變化。凝固階段產(chǎn)生的孔隙是盡可能需要避免的,它雖然通過后段拉伸發(fā)生一定的閉合,然而,這些微孔缺陷始終存在,與最終的碳纖維結(jié)構(gòu)具有傳承性,不可能通過分子運動和擴散達到真正的彌合,而且這些缺陷經(jīng)過拉伸后尺度變得很小,難以通過常規(guī)的表征手段檢測到。因此如何合理地控制凝固條件,盡可能抑制這類微孔的產(chǎn)生是原絲紡制工藝的關(guān)鍵。我們已系統(tǒng)研究了聚合物溶劑非溶劑三元體系凝固過程的形態(tài)演化,如圖圖10所示。聚合物、溶劑和非溶劑兩兩之間的相互作用對平衡相圖和形態(tài)演化有著重要的影響,其中溶劑與非溶劑之間的相互作用較為敏感,特別是依次增加溶劑與非溶劑的排斥作用,就可逐步縮小相圖中兩相區(qū)所占的比例,利于纖維中濃度的演化路徑繞開兩相區(qū),得到纖維截面從疏松到指紋狀再到致密的形態(tài)轉(zhuǎn)變。圖 10 溶劑與非溶劑的相互作用參數(shù)對相圖和纖維截面演化形態(tài)的影響,熱力學(xué)兩兩相互作用參數(shù)和溶劑非溶劑分子的動力學(xué)特征交換時間t12=4180。107下紡絲過程中纖維表層濃度在相圖上的演化路徑及形態(tài)演化過程。原絲的形態(tài)并不完全由熱力學(xué)決定,還受制于動力學(xué)過程。圖11 充分說明即使在相同的熱力學(xué)參數(shù)下,溶劑與非溶劑之間的擴散速度的變化就會使形態(tài)有較大的改變,增加溶劑與非溶劑間的擴散速度,形態(tài)由致密重新變?yōu)槭杷?。從理論上清晰地證明了降低溶劑與非溶劑之間的擴散速度對獲得致密的PAN原絲是十分有利的。 t=10000 t=50000 t=100000 t=200000圖 11 改變?nèi)軇┓侨軇U散速度對形態(tài)演化的影響。下的纖維形態(tài)演化過程。溶劑非溶劑分子的動力學(xué)特征交換時間從圖27的t12=4180。107依次減小為2180。107和107,表示溶劑與非溶劑之間的擴散速度逐步加快。在上述已取得部分成果的基礎(chǔ)上,我們將要開展的研究:(1) 原液紡絲拉伸流動模型的進一步發(fā)展,模型所需參數(shù)的實驗測定;通過模型計算給出針對生產(chǎn)工藝的拉伸速率, 拉伸應(yīng)力和穩(wěn)定化條件;(2) 紡絲流動過程傳熱模型的完善;考慮流體粘度和密度隨溫度變化,還將原液的流變行為耦合進流場,以期更為準確地改進噴絲組件的出絲均勻性及紡絲穩(wěn)定性;(3) 測定上海石化原料液中溶劑、非溶劑的擴散系數(shù),以Monte Carlo方法為基礎(chǔ),發(fā)展PAN凝固動力學(xué)的理論模型,結(jié)合必要的顯微光學(xué)實驗,闡明PAN/溶劑/非溶劑體系的相分離,即凝固動力學(xué),預(yù)測其最終凝聚態(tài)結(jié)構(gòu);(4) 將研究結(jié)果推廣到對PAN原絲生產(chǎn)的其它動力學(xué)過程,主要是紡絲原液進入凝固浴后的雙擴散過程、纖維拉伸過程和凝固中所形成孔隙的熔合動力學(xué)過程,并結(jié)合相圖和動力學(xué)方程,分析凝固浴和PAN溶液的界面早期動力學(xué)穩(wěn)定性,找出界面穩(wěn)定性對工藝參數(shù),例如溫度、原液配比等的依賴關(guān)系,為合理地控制纖維的表面形貌指明方向。利用數(shù)值計算方法求解動力學(xué)方程,以全面詳細了解纖維內(nèi)部形貌演化的動力學(xué),為工藝設(shè)計上控制纖維內(nèi)部結(jié)構(gòu)通過理論指導(dǎo);(5) 進一步利用上述理論和實驗結(jié)果對原液進入凝固浴后的雙擴散過程、纖維拉伸過程和凝固中所形成孔隙的熔合動力學(xué)過程進行系統(tǒng)的研究,尋找各種因素影響分子取向、排列和結(jié)晶的基本物理機制,為T700以上級碳纖維的研發(fā)提供本質(zhì)上的支持。3 氧化碳化過程中的基礎(chǔ)科學(xué)問題-耦合各種化學(xué)反應(yīng)的纖維拉伸流變學(xué)從工業(yè)化生產(chǎn)的角度而言,預(yù)氧化工藝條件也是碳纖維生產(chǎn)效率的控制步驟之一。因而,依據(jù)丙烯腈共聚物的鏈結(jié)構(gòu)、原絲的聚集態(tài)結(jié)構(gòu)以及原絲的旦數(shù)尋求恰當(dāng)?shù)念A(yù)氧化條件(最佳預(yù)氧化溫度和溫度梯度、時間,預(yù)氧化的氣氛組成與壓力,預(yù)氧化時的張力大小等等),控制恰當(dāng)?shù)念A(yù)氧化纖維的結(jié)構(gòu),進而探求耐熱梯型結(jié)構(gòu)和亂層石墨結(jié)構(gòu)形成的影響因素及其與前驅(qū)體結(jié)構(gòu)傳承性之間的關(guān)系是獲得高性能碳纖維和性能的進一步提高的研究關(guān)鍵。提高取向度是提高纖維材料模量和強度的有效途徑之一。對非晶高分子材料而言,高分子鏈的取向拉伸過程一般在Tg附近進行,通過拉伸可以讓高分子構(gòu)象有效地重排,取向度的大小主要取決于拉伸外場對高分子鏈的作用時間的長短即拉伸速度,以及高分子鏈本征的末端松弛時間,由于使用溫度是在遠離Tg的常溫下,鏈取向狀態(tài)基本不會松弛。對于半晶材料,拉伸過程一般在Tm以下,高分子材料的取向還往往伴隨著凝聚態(tài)結(jié)構(gòu)的破壞和重組,因而,半晶材料的取向過程和機理耦合了多個復(fù)雜的物理過程。如果把取向好的高分子材料置放在高溫下,高分子鏈的松弛時間大為縮短,很容易發(fā)生解取向,通過取向獲得的優(yōu)良特性就會喪失(圖12)。Draw at rate of圖 12 纖維在高溫和拉伸外場下的解取向示意圖,解取向程度與拉伸速率和分子鏈的松弛時間有關(guān)PAN原絲預(yù)氧化過程從本質(zhì)上看是一個耦合了多種化學(xué)反應(yīng)的纖維拉伸過程。由于預(yù)氧化溫度處在PAN的Tg以上,不僅伴隨有取向纖維的構(gòu)象松弛(熵回復(fù)),還有化學(xué)反應(yīng)導(dǎo)致的收縮。因此預(yù)氧化的關(guān)鍵之一就是如何盡可能地減少構(gòu)象松弛。這些變化都會在絲束的應(yīng)力上有所表現(xiàn),這就要求在連續(xù)化生產(chǎn)的走絲過程中對張應(yīng)力進行精確調(diào)控,以避免斷絲和掛絲,以滿足生產(chǎn)高性能碳纖維的需求。對預(yù)氧化階段耦合了化學(xué)反應(yīng)的纖維拉伸過程進行研究是十分必要的。碳纖維生產(chǎn)的預(yù)氧化和碳化階段還伴隨聚丙烯腈鏈的氧化環(huán)化反應(yīng)等一系列發(fā)生明顯的熱量變化和許多迄今為止尚不明了的、復(fù)雜的化學(xué)過程。因而,依據(jù)丙烯腈共聚物的鏈結(jié)構(gòu)、原絲的聚集態(tài)結(jié)構(gòu)以及原絲的旦數(shù)尋求恰當(dāng)?shù)念A(yù)氧化條件(最佳預(yù)氧化溫度和溫度梯度、時間,預(yù)氧化的氣氛組成與壓力,預(yù)氧化時的張力大小等等),控制恰當(dāng)?shù)念A(yù)氧化程度是必須的。在PAN原絲轉(zhuǎn)變?yōu)樘祭w維過程中,在預(yù)氧化階段,涉及到原絲在空氣中受到熱及外力作用下的穩(wěn)定化過程。由于不易實時表征和監(jiān)測穩(wěn)定化過程中的各種化學(xué)反應(yīng),對于穩(wěn)定化過程中的各種物理、化學(xué)變化如何影響穩(wěn)定化機理并不十分清楚。因此,通過分析穩(wěn)定化過程中的動力學(xué)對于制定合適的工藝條件及降低成本將具有重要意義。理論方面:根據(jù)PAN原絲在氧化爐中反應(yīng)和拉伸狀態(tài),我們假設(shè)纖維在進入拉伸段前溫度小于玻璃化溫度,進入之后大于玻璃化溫度。當(dāng)拉伸流動達到穩(wěn)態(tài)時,我們可以關(guān)注定態(tài)時的纖維的速度分布。我們提出了粘彈性物體在拉伸流動中的力學(xué)松弛模型如圖12所示:圖 12 纖維在拉伸流動中的力場和速度場分析由物料流通量守恒和Maxwell模型,我們得到了纖維在高溫拉伸過程中的速度分布 (3)式中,x為在纖維徑向上與進料口的距離,,為纖維的密度,為粘度,初始松弛應(yīng)力,和分別為纖維內(nèi)部各種運動模式的熵回復(fù)的松弛時間和化學(xué)反應(yīng)導(dǎo)致的纖維收縮的松弛時間,c和c1為常數(shù)。和分別為纖維進料口和出料口的拉伸速度。先忽略化學(xué)反應(yīng),方程(3)可簡化為: (4)再進一步簡化成單一松弛時間,其解如圖13所示。我們發(fā)現(xiàn)當(dāng)粘度較大且松弛速度快時(即小時),在拉伸中段速度有極大,即中間細;當(dāng)粘度較大且松弛速度慢時(即大時),在拉伸中段速度有極小,即中間粗。纖維內(nèi)部發(fā)生化學(xué)反應(yīng)后,里面的結(jié)構(gòu)發(fā)生改變進而產(chǎn)生相應(yīng)的回復(fù)應(yīng)力,我們假設(shè)有一單一的化學(xué)反應(yīng),反應(yīng)程度隨時間指數(shù)增加,從圖中我們可以看到在某些條件下,化學(xué)的松弛模式和加溫所引起的松弛模式使得該曲線有兩個極值。與前人的實驗在定性上是基本相符的。圖 13 沿纖維拉伸方向的瞬時速度分布。黑線、點線:沒有化學(xué)反應(yīng);虛線:有化學(xué)反應(yīng);。實驗方面:基于上述理論模型,設(shè)計相應(yīng)的氧化碳化設(shè)備,并進行相關(guān)工藝的探索和優(yōu)化。主要包括如下兩個方面:(1) 原絲在恒應(yīng)力情況下,研究原絲在預(yù)氧化過程中沿長度方向的形變及其微觀機制,并考察各種工藝條件的影響。l 各區(qū)段的溫度設(shè)置及升溫速率;l 應(yīng)力載荷的調(diào)節(jié);l 氣氛流速;l 原絲的預(yù)處理方法;l 各溫度區(qū)間的各種化學(xué)反應(yīng)及氣體釋放;l 極限氧指數(shù)的變化。為考察上述因素的影響,我們已設(shè)計并試制了如圖14所示的靜態(tài)預(yù)氧化碳化設(shè)備。該設(shè)備有多個溫度區(qū)段,可以滿足從室溫到1000oC的穩(wěn)定加熱要求,并裝備有張力控制機構(gòu)和氣體收集設(shè)施。為預(yù)氧化和碳化條件的優(yōu)化提供了保證。圖 14 自制靜態(tài)預(yù)氧化碳化實驗設(shè)備(2) 在靜態(tài)研究的基礎(chǔ)上,我們開展動態(tài)條件下原絲在預(yù)氧化過程中的相關(guān)實驗,試制如圖15所示的動態(tài)設(shè)備,除了考察與靜態(tài)實驗類似的實驗條件和相應(yīng)指標,如氣氛流速、原絲的預(yù)處理方法和極限氧指數(shù)的變化等,充分考慮動態(tài)實驗的特點,著重研究應(yīng)力、應(yīng)變和應(yīng)變速率的變化規(guī)律與下列條件的關(guān)系:l 走絲速率及其局部瞬時速率的分布;l 各區(qū)段的溫度設(shè)置及距離分配;l 各區(qū)段張力的分配;l 各區(qū)間的化學(xué)反應(yīng)及氣體釋放;通過動力學(xué)研究,進一步理清纖維熱穩(wěn)定化過程中的物理、化學(xué)反應(yīng)機理。
點擊復(fù)制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1