【總結】解直角三角形高密市城南中學李宗洲(說課案例)標注點擊每頁幻燈片的圖標,則幻燈片翻頁一教材分析單元知識內容:1直角三角形的邊角關系.2應用勾股定理、Rt△的兩銳角互余及銳角三角函數解直角三角形.3應用解直角三角形的有關知識解決一些簡單的實際問題(包括
2025-11-01 12:43
【總結】在RtΔABC中,若∠C=900,問題1.兩銳角∠A與∠B有什么關系?答:∠A+∠B=900.問題2.三邊a、b、c的關系如何?答:a2+b2=c2.問題3.∠B與邊的關系是
2025-11-01 01:51
【總結】解直角三角形(4)1、如圖,在Rt△ABC中:22復習ABC(1)∠A=30°,AB=4,解這個直角三角形;(2)tanA=,求∠A的大小。導入如圖,有三個斜坡,其坡面與水平面的夾角分別為α、β、γ,且αβγ
2025-11-12 00:14
【總結】九年級數學(上冊)第一章證明(二)(2)直角三角形全等的證明陽泉市義井中學高鐵牛駛向勝利的彼岸三角形全等的判定?公理:三邊對應相等的兩個三角形全等(SSS).?公理:兩邊及其夾角對應相等的兩個三角形全等(SAS).?公理:兩角及其夾邊對應相等的兩個三角形全等(ASA).?推論:兩角及其中一角的對
2025-10-10 12:33
【總結】等腰三角形和直角三角形專項練習題1、選擇題°,底邊上的高為9cm,則腰長為()cm. D.,斜邊上的中線長為3.則直角三角形的面積為(??) ,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC于M,連接CD.下列結論:①AC+CE=AB;②CD=
2025-03-25 06:57
【總結】(2010哈爾濱)在Rt△ABC中,∠C=90°,∠B=35°,AB=7,則BC的長為().C(A)7sin35°(B)(C)7cos35°(D)7tan35°(2010紅河自治州)計算:+2sin60°=(2010紅河自治州)(本小題滿分9分)如圖5,一架飛機
2025-08-04 12:59
2025-08-05 19:13
【總結】第一篇:全等三角形證明為何非直角三角形 全等三角形證明為何非直角三角形 不能用ASS(角邊邊)證明 證明全等中的ASS 1)直角三角形ASS是可以的(HL) 2)非直角三角形不行A C ...
2025-10-14 07:54
【總結】等腰三角形和直角三角形?回民中學付靈強等腰三角形和直角三角形知識要點1:(1)掌握等腰三角形的兩底角相等;底邊上的高、中線及頂角平分線三線合一的性質;(2)掌握等腰三角形和等邊三角形的性質和判定方法,能夠靈活應用它們進行有關的論證和計算.例1、如圖,等腰△ABC兩腰上的中線BD、C
2025-07-26 00:43
【總結】1直角三角形課題直角三角形本課(章節(jié))需10課時,本節(jié)課為第3課時,為本學期總第3課時教學目標知識與技能:1、讓學生體驗勾股定理的探索過程;2、掌握勾股定理;3、學會用勾股定理解決簡單的幾何問題.過程與方法:經歷操作、歸納和猜想,用面積法推導作出肯定結論的過程,來了解勾股定理情感態(tài)度與價值觀:了解我國古代
2025-11-12 04:24
【總結】解直角三角形的說課稿 各位領導老師同學們,大家下午好! 我說課的的題目是解直角三角形,它是第二十五章第三節(jié)內容,我從下面五個方面說課。 第一方面:教材分析 1、本節(jié)的地位作用 《解直角三角形...
2024-12-04 22:53
【總結】精品資源《解直角三角形》基礎測試一填空題(每小題6分,共18分):1.在Rt△ABC中,∠C=90°,a=2,b=3,則cosA= ,sinB= ,tanB= ,cotB= ?。?.直角三角形ABC的面積為24cm2,直角邊AB為6cm,∠A是銳角,則sinA= ?。?.等腰三角形底邊長10cm,周長為36cm,則一底角的余切值為 .
2025-03-25 07:47
【總結】【探究目標】1.目的與要求能綜合運用直角三角形的勾股定理與邊角關系解決簡單的實際問題.2.知識與技能能根據直角三角形中的角角關系、邊邊關系、邊角關系解直角三角形,能運用解直角三角形的知識解決有關的實際問題.3.情感、態(tài)度與價值觀通過解直角三角形的應用,培養(yǎng)學生學數學、用數學的意識和能力,激勵學生多接觸社會、了解生活并熟悉一些生產和生活中的實際事物.【探究指
2025-06-07 19:21
【總結】“啟發(fā)”輔導中心專用資料九(下)數學輔導---------解直角三角形21、計算:(1)(2)(3)cos30°+sin45°(4)6tan230°-sin60°-2sin45°
2025-08-17 07:43
【總結】第25章?解直角三角形復習第25章?解直角三角形復習二.重點、難點:?1.重點:???(1)探索直角三角形中銳角三角函數值與三邊之間的關系.掌握三角函數定義式:sinA=,cosA=,tanA=,cotA=.???(2)掌握30°、45°、60&
2025-06-07 22:10