freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

專題一函數(shù)和導(dǎo)數(shù)(編輯修改稿)

2025-04-20 05:52 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 )=3ax2-,設(shè)公切點(diǎn)的橫坐標(biāo)為x0,則與f(x)的圖象相切的直線方程為y=(ln x0+1)x-x0,與g(x)的圖象相切的直線方程為y=x-2ax-,∴解之得x0ln x0=-,由(1)知x=,∴a=.第四講   導(dǎo)數(shù)的綜合應(yīng)用1.(2015上饒模擬)已知函數(shù)f(x)=ex+mx-2,g(x)=mx+ln x.(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)當(dāng)m=-1時(shí),試推斷方程:=+是否有實(shí)數(shù)解.2.已知函數(shù)f(x)=aln x+1(a0).(1)當(dāng)a=1且x1時(shí),證明:f(x)3-;(2)若對(duì)?x∈(1,e),f(x)x恒成立,求實(shí)數(shù)a的取值范圍.3.(2015菏澤模擬)已知函數(shù)f(x)=(其中k∈R,e= 28…是自然對(duì)數(shù)的底數(shù)),f′(x)為f(x)導(dǎo)函數(shù).(1)當(dāng)k=2時(shí),其曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;(2)若x∈(0,1]時(shí),f′(x)=0都有解,求k的取值范圍;(3)若f′(1)=0,試證明:對(duì)任意x0,f′(x)恒成立.4.已知函數(shù)f(x)=xln x,g(x)=x3+ax2-x+2.(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)求函數(shù)f(x)在區(qū)間[t,t+2](t0)上的最小值;(3)若對(duì)一切的x∈(0,+∞),2f(x)g′(x)+2恒成立,求實(shí)數(shù)a的取值范圍.5.(2015銀川模擬)定義在R上的函數(shù)f(x)滿足f(x)=e2x-2+x2-2f(0)x,g(x)=f-x2+(1-a)x+a.(1)求函數(shù)f(x)的解析式;(2)求函數(shù)g(x)的單調(diào)區(qū)間;(3)如果s、t、r滿足|s-r|≤|t-r|,≥2且x≥1時(shí),試比較和ex-1+a哪個(gè)更靠近ln x,并說(shuō)明理由. 6.(2015山東省實(shí)驗(yàn)診斷)已知函數(shù)f(x)=.(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)若函數(shù)f(x)在區(qū)間(t0)上不是單調(diào)函數(shù),求實(shí)數(shù)t的取值范圍;(3)如果當(dāng)x≥1時(shí),不等式f(x)≥恒成立,求實(shí)數(shù)a的取值范圍.答案1.解:(1)由題意可得:f′(x)=ex+m.當(dāng)m≥0時(shí),f′(x)0,所以當(dāng)m≥0時(shí),函數(shù)f(x)的單調(diào)增區(qū)間為R.當(dāng)m0時(shí),令f′(x)0,即ex+m0,可得:xln(-m);令f′(x)0時(shí),即ex+m0,可得:xln(-m).所以當(dāng)m0時(shí),函數(shù)f(x)的單調(diào)增區(qū)間為(ln(-m),+∞),單調(diào)減區(qū)間為(-∞,ln(-m)).(2)當(dāng)m=-1時(shí),g(x)=-x+ln x(x0),易得:g′(x)=-1.令g′(x)0,可得:0x1;令g′(x)0,可得:x1.故g(x)在x=1處取得極大值,亦即最大值.即g(x)≤g(1)=-1,∴|g(x)|≥1.令h(x)=+,所以h′(x)=.令h′(x)0,可得:0xe,令h′(x)0,可得:xe.故h(x)在x=e處取得極大值,亦即最大值.∴h(x)≤h(e)=+1.所以方程=+無(wú)實(shí)數(shù)解.2.解:(1)證明:要證f(x)3-,即證ln x+-20,令m(x)=ln x+-2,則m′(x)=-=0.所以m(x)在(1,+∞)上單調(diào)遞增,所以m(x)m(1)=0,所以ln x+-20,即f(x)3-成立.(2)由f(x)x且x∈(1,e)可得a,令h(x)=,h′(x)=,由(1)知ln x-1+1+-=0,所以h′(x)0,函數(shù)h(x)在(1,e)上單調(diào)遞增,當(dāng)x∈(1,e)時(shí),h(x)h(e)=e-1,所以a≥e-1.所以a的取值范圍是[e-1,+∞).3.解:(1)由f(x)=得f′(x)=,x∈(0,+∞),所以曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率為f′(1)=-,∵f(1)=,∴曲線y=f(x)切線方程為y-=-(x-1);即y=-x+.(2)由f′(x)=0得k=,令F(x)=,∵0x≤1,∴F′(x)=-0,所以F(x)在(0,1]上單調(diào)遞減,又當(dāng)x趨向于0時(shí),F(xiàn)(x)趨向于正無(wú)窮大,故F(x)≥F(1)=1,即k≥[1,+∞).(3)由f′(1)=0,得k=1,令g(x)=(x2+x)f′(x),所以g(x)=(1-x-xln x),x∈(0,+∞),因此,對(duì)任意x0,g(x)e-2+1等價(jià)于1-x-xln x(e-2+1),由h(x)=1-x-xln x,x∈(0,+∞),得h′(x)=-ln x-2,x∈(0,+∞).因此,當(dāng)x∈(0,e-2)時(shí),h′(x)0,h(x)單調(diào)遞增;x∈(e-2,+∞)時(shí),h′(x)0,h(x)單調(diào)遞減.所以h(x)的最大值為h(e-2)=e-2+1,故1-x-xln x≤e-2+1.設(shè)φ(x)=ex-(x+1),∵φ′(x)=ex-1,所以x∈(0,+∞)時(shí)φ′(x)0,φ(x)單調(diào)遞增,φ(x)φ(0)=0,故x∈(0,+∞)時(shí),φ(x)=ex-(x+1)0,即1,所以1-x-xln x≤e-2+1(e-2+1).因此,對(duì)任意x0,f′(x)恒成立.4.解:(1)f(x)的定義域?yàn)?0,+∞),f′(x)=ln x+1,令f′(x)0得0x;令f′(x)0得x.∴f(x)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間為.(2)(ⅰ)當(dāng)0tt+2時(shí),無(wú)解;(ⅱ)當(dāng)0tt+2,即0t時(shí),由(1)知,f(x)min=f=-;(ⅲ)當(dāng)≤tt+2,即≤t時(shí),f(x)在區(qū)間[t,t+2]上單調(diào)遞增,f(x)min=f(t)=tln t.綜上,f(x)min=(3)由2f(x)g′(x)+2,得2xln x3x2+2ax+1.∵x0,∴aln x-x-,設(shè)h(x)=ln x-x-,則h′(x)=-+=-.令h′(x)=0,得x=1,x=-(舍).當(dāng)0x1時(shí),h′(x)0,h(x)在(0,1)上單調(diào)遞增;當(dāng)x1時(shí),h′(x)0,h(x)在(1,+∞)上單調(diào)遞減.∴當(dāng)x=1時(shí),h(x)取得最大值,h(x)max=-2,∴a-2.∴a的取值范圍是(-2,+∞). :(1)f′(x)=f′(1)e2x-2+2x-2f(0),所以f′(1)=f′(1)+2-2f(0),即f(0)=1. 又f(0)=e-2,所以f′(1)=2e2,所以f(x)=e2x+x2-2x.(2)∵f(x)=e2x-2x+x2,∴g(x)=f-x2+(1-a)x+a=ex+x2-x-x2+(1-a)x+a=ex-a(x-1),∴g′(x)=ex-a.①當(dāng)a≤0時(shí),g′(x)0,函數(shù)f(x)在R上單調(diào)遞增;②當(dāng)a0時(shí),由g′(x)=ex-a=0得x=ln a,∴x∈(-∞,ln a)時(shí),g′(x)0,g(x)單調(diào)遞減;x∈(ln a,+∞)時(shí),g′(x)0,g(x)單調(diào)遞增.綜上,當(dāng)a≤0時(shí),函數(shù)g(x)的單調(diào)遞增區(qū)間為(-∞,+∞);當(dāng)a0時(shí),函數(shù)g(x)的單調(diào)遞增區(qū)間為(ln a,+∞),單調(diào)遞減區(qū)間為(-∞,ln a).(3)設(shè)p(x)=-ln x,q(x)=ex-1+a-ln x,∵p′(x)=--0,∴p(x)在x∈[1,+∞)上為減函數(shù),又p(e)=0,∴當(dāng)1≤x≤e時(shí),p(x)≥0,當(dāng)xe時(shí),p(x)0.∵q′(x)=ex-1-,q″(x)=ex-1+0,∴q′(x)在x∈[1,+∞)上為增函數(shù),又q′(1)=0,∴x∈[1,+∞)時(shí),q′(x)≥0,∴q(x)在x∈[1,+∞)上為增函數(shù),∴q(x)≥q(1)=a+10.①當(dāng)1≤x≤e時(shí),|p(x)|-|q(x)|=p(x)-q(x)=-ex-1-a,設(shè)m(x)=-ex-1-a,則m′(x)=--ex-10,∴m(x)在x∈[1,+∞)上為減函數(shù),∴m(x)≤m(1)=e-1-a,∵a≥2,∴m(x)0,∴|p(x)||q(x)|,∴比ex-1+a更靠近ln x.②當(dāng)xe時(shí),|p(x)|-|q(x)|=-p(x)-q(x)=-+2ln x-ex-1-a2ln x-ex-1-a,設(shè)n(x)=2ln x-ex-1-a,則n′(x)=-ex-1,n″(x)=--ex-10,∴n′(x)在xe時(shí)為減函數(shù),∴n′(x)n′(e)=-ee-10,∴n(x)在xe時(shí)為減函數(shù),∴n(x)n(e)=2-a-ee-10,∴|p(x)||q(x)|,∴比ex-1+a更靠近ln x.綜上在a≥2,x≥1時(shí),比ex-1+a更靠近ln x. :(1)f′(x)=-(x0),解f′(x)0,得0x1;解f′(x)0,得x1;所以f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減.(2)因?yàn)楹瘮?shù)f(x)在區(qū)間(t0)上不是單調(diào)函數(shù),所以解得t1.故t的取值范圍為.(3)不等式f(x)≥恒成立,即≥a恒成立,令g(x)=,則g′(x)==,令h(x)=x-ln x,則h′(x)=1-,∵x≥1,∴h′(x)≥0,∴h(x)在[1,+∞)上單調(diào)遞增,∴h(x)min=h(1)=10,從而g′(x)0,所以g(x)在[1,+∞)上單調(diào)遞增,且g(x)min=g(1)=2,所以a≤(-∞,2].高考大題專項(xiàng)練(一) 函數(shù)與導(dǎo)數(shù)A組1.(2015東北三校聯(lián)考)已知實(shí)數(shù)a為常數(shù),函數(shù)f(x)=xln x+ax2.(1)若曲線y=f(x)在x=1處的切線過(guò)點(diǎn)A(0,-2),求實(shí)數(shù)a的值;(2)若函數(shù)y=f(x)有兩個(gè)極值點(diǎn)x1,x2(x1x2).①求證:-a0;②求證:f(x1)0,f(x2)-.2.(2015長(zhǎng)沙模擬)若函數(shù)f(x)是定義域D內(nèi)的某個(gè)區(qū)間I上的增函數(shù),且F(x)=在I上是減函數(shù),則稱y=f(x)是I上的“單反減函數(shù)”,已知f(x)=ln x,g(x)=2x++aln x(a∈R).(1)判斷f(x)在(0,1]上是否是“單反減函數(shù)”;(2)若g(x)是[1,+∞)上的“單反減函數(shù)”,求實(shí)數(shù)a的取值范圍.3.(2015鄭州二模)已知函數(shù)f(x)=ax+ln(x-1),其中a為常數(shù).(1)試討論f(x)的單調(diào)區(qū)間;(2)若a=時(shí),存在x使得不等式|f(x)|-≤成立,求b的取值范圍.B組1.(2015石家莊二模)已知函數(shù)f(x)=ex-ax-2(e是自然對(duì)數(shù)的底數(shù),a∈R).(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;(2)若k為整數(shù),a=1,且當(dāng)x0時(shí),f′(x)1恒成立,其中f′(x)為f(x)的導(dǎo)函數(shù),求k的最大值.2.(2015汕頭二模)設(shè)函數(shù)f(x)=-ax.(1)若函數(shù)f(x)在(1,+∞)上為減函數(shù),求實(shí)數(shù)a的最小值;(2)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立,求實(shí)數(shù)a的取值范圍.3.(2015寧德質(zhì)檢)已知函數(shù)f(x)=ln x-a(x-1)(a∈R).(1)若a=-2,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;(2)若不等式f(x)0對(duì)任意x∈(1,+∞)恒成立.①求實(shí)數(shù)a的取值范圍;②試比較ea-2與ae-2的大小,并給出證明(e為自然對(duì)數(shù)的底數(shù),e≈ 28).答案A組1.解:(1)由已知:f′(x)=ln x+1+2ax(x0),f′(1)=2a+1,即為切線斜率,切點(diǎn)P(1,a),切線方程:y-a=(2a+1)(x-1),把(0,-2)代入得a=1.(2)①證明:依題意f′(x)=0有兩個(gè)不等實(shí)根x1,x2(x1x2),設(shè)g(x)=ln x+2ax+1,則g′(x)=+2a(x0),(ⅰ)當(dāng)a≥0時(shí),g′(x)0,所以g(x)是增函數(shù),不符合題意;(ⅱ)當(dāng)a0時(shí),由g′(x)=0得x=-0,列表如下:x-g′(x)+0-g(x)極大值g(x)max=g=l
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1