freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高一第一學(xué)期集合典型例題(編輯修改稿)

2025-02-10 05:13 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 先去掉絕對(duì)值號(hào),把函數(shù)式化簡(jiǎn)后再考慮求單調(diào)區(qū)間. 解 當(dāng)x-1≥0且x-1≠1時(shí),得x≥1且x≠2,則函數(shù)y=-x. 當(dāng)x-1<0且x-1≠-1時(shí),得x<1且x≠0時(shí),則函數(shù)y=x-2. ∴增區(qū)間是(-∞,0)和(0,1) 減區(qū)間是[1,2)和(2,+∞) (3)解:由-x2-2x+3≥0,得-3≤x≤1. 令u==g(x)=-x2-2x+3=-(x+1)2+4.在x∈[-3,-1]上是 在x∈[-1,1]上是 . ∴函數(shù)y的增區(qū)間是[-3,-1],減區(qū)間是[-1,1].4.已知函數(shù)f(x)=kx3-3(k+1)x2-k2+1(k0).若f(x)的單調(diào)遞減區(qū)間是(0,4),(1)求k的值;(2)當(dāng)kx時(shí),求證:23-.解:(1)f′(x)=3kx2-6(k+1)x由f′(x)0得0x∵f(x)的遞減區(qū)間是(0,4)∴=4,∴k=1.(2)設(shè)g(x)=2g′(x)=當(dāng)x1時(shí),1x2∴,∴g′(x)0∴g(x)在x∈[1,+∞)上單調(diào)遞增∴x1時(shí),g(x)g(1)即23∴23-4.三次函數(shù)f(x)=x3-3bx+3b在[1,2]內(nèi)恒為正值,求b的取值范圍.∵x∈[1,2]時(shí),f(x)0∴f(1)0,f(2)0∴f(1)=10,f(2)=8-3b0∴b又f′(x)=3(x2-b)(1)若b≤1,則f′(x)≥0f(x)在[1,2]上單調(diào)遞增f(x)≥f(1)0(2)若1b由f′(x)=0,得x=當(dāng)1≤x≤時(shí),f′(x)≤0f(x)在[1,]上單調(diào)遞減,f(x)≥f()f()為最小值當(dāng)x≤2時(shí),f′(x)0f(x)在(,2]上單調(diào)遞增f(x)f()∴只要f()0,即1b時(shí),f(x)綜上(1)、(2),∴b的取值范圍為b.4已知二次函數(shù)y=f(x)(x∈R)的圖像是一條開(kāi)口向下且對(duì)稱軸為x=3的拋物線,試比較大?。?(1)f(6)與f(4) 解 (1)∵y=f(x)的圖像開(kāi)口向下,且對(duì)稱軸是x=3,∴x≥3時(shí),f(x)為減函數(shù),又6>4>3,∴f(6)<f(4) 時(shí)為減函數(shù). 解 :任取兩個(gè)值xx2∈(-1,1),且x1<x2. 當(dāng)a>0時(shí),f(x)在(-1,1)上是減函數(shù). 當(dāng)a<0時(shí),f(x)在(-1,1)上是增函數(shù).證明題:4利用函數(shù)單調(diào)性定義證明函數(shù)f(x)=-x3+1在(-∞,+∞)上是減函數(shù). 證: 取任意兩個(gè)值x1,x2∈(-∞,+∞)且x1<x2. 又∵x1-x2<0,∴f(x2)<f(x1) 故f(x)在(-∞,+∞)上是減函數(shù). 得f(x)在(-∞,+∞)上是減函數(shù).函數(shù)單調(diào)性與反函數(shù)的典型例題(總)選擇題 ,在(0,2)上為增函數(shù)的是( B ) (A)y=3x+1 (B)y=|x+2| (C)y= (D)y=x24x+3 (x)=x2+2(a1)x+2在區(qū)間(∞,4)上是減函數(shù),那么實(shí)數(shù)a的取值范圍是( B ) (A)[3,+∞ ) (B)(∞,3] (C){3} (D)(∞,5] (x)=2x2mx+3,當(dāng)x∈(2,+∞)時(shí)是增函數(shù),當(dāng)x∈(∞,2)時(shí)是減函數(shù),則f(1)等于( B ) (A)3 (B)13 (C)7 (D)由m而決定的常數(shù). (x)在(2,3)上是增函數(shù),則f(x5)的遞增區(qū)間是( A ) (A)(3,8) (B)(7,2) (C)(2,3) (D)(0,5). =的遞增區(qū)間是( B ) (A)(∞,2) (B)[5,2] (C)[2,1]. (D)[1,+∞). (x)=x2+bx+c對(duì)任意t都有f(2+t)=f(2t),那么( A ) (A)f(2)f(1)f(4) (B)f(1)f(2)f(4)(C)f(2)f(4)f(1) (D)f(4)f(2)f(1)=f(x)的圖象與直線y=x有一個(gè)交點(diǎn),則y=f1(x)與y=x的交點(diǎn)個(gè)數(shù)為( B ) (A)O個(gè) (B)1個(gè) (C)2個(gè) (D)不確定 =f(x)(x∈R)的反函數(shù)為y=f1(x),則必在y=f1(x)的圖象上的點(diǎn)是( B ) (A)(f(a),a) (B)(f(a),a) (C)(a,f(a)) (D)(a,f1(a)) =f(x)存在反函數(shù),則方程f(x)=2c(c為常數(shù))( C ) (A)有且只有一個(gè)實(shí)根 (B)至少有一個(gè)實(shí)根 (C)至多有一個(gè)實(shí)根 (D)沒(méi)有實(shí)根 (x)=x+b與g(x)=ax5互為反函數(shù),則a,b的值分別為(A ) (A)a=2,b= (B)a=,b=2 (C)a=,b=5 (D)a=5,b= =的反函數(shù)f1(x)=,則f(x)的定義域?yàn)? D )(A)(2,0) (B)[2,2] (C)[2,0] (D)[0,2]=f(x)的圖象過(guò)點(diǎn)(0,1),則y=f1(x)+2的圖象必過(guò)點(diǎn)( A )(A) (1,2) (B)(2,1) (C) (0,1) (D)(2,0)填空題5函數(shù)y=的單調(diào)遞增區(qū)間是_______________提示:由x22xO,得函數(shù)的定義域?yàn)?∞,0]∪[2,+∞).又拋物線開(kāi)口向上,對(duì)稱軸方程為x=1,故遞增區(qū)間為[2,+∞].5已知函數(shù)f(x)=x22ax+a2+b,(1)若f(x)在(∞,1)上是減函數(shù),則a的取值范圍是______;(2)若對(duì)于任意x∈R恒有f(x)≥0,則b的取值范圍是____提示:由已知條件知a≤1.∵f(x)=(xa)2+b≥0恒成立,∴b≥0,故(1)填a≤1,(2)填b≥0.5函數(shù)y=3m(x1)的反函數(shù)圖象必過(guò)定點(diǎn) _____________提示:y=3m(x1),x=1時(shí),y=1.∴y=3m(x1)的圖像必過(guò)(1,1)(1,1)點(diǎn).60、函數(shù)y=(x1)2(x≤O)的反函數(shù)為 ___________提示:∵y≤1,∴y=(x1)2.∴x=1177。,∵x≤0,∴x=1.∴其反函數(shù)為y=1.解答題6求函數(shù)f(x)=x+在(0,+∞)上的單調(diào)性.證明:設(shè)x1,x2∈(O,+∞),且x1x2, 則f(x1)f(x2)=x1+x2=(x1x2)+=(x1x2)(1) ∴當(dāng)1≤x1x2時(shí),x1x20,x1x2l,01, ∴10,∴(x1x2)(1)0,∴f(x1)f(x2) ∴f(x)在[1,+∞]上是增函數(shù). 當(dāng)0x1x2≤l時(shí),x1x20,0x1x21,l0, (x1x2)(1)0,∴f(x1)f(x2), ∴f(x)在(O,1)上是減函數(shù). 即f(x)=x+在(0,1)上是減函數(shù),在[1,+∞)上是增函數(shù).6.設(shè)函數(shù)f(x)在(0,+∞)上是減函數(shù),且有f(2a2+a+1)f(3a22a+1),求實(shí)數(shù)a的取值范圍.解:2a2+a+1=2(a2++)+=2(a+)2+0, 3a22a+1=3(a2a+)+=3(a)2+0. 又∵f(x)在(0,+∞)上是減函數(shù), ∴原不等式可變形為2a2+a+l3a22a+1. 整理,得a23a0.解得0a3.6已知函數(shù)f(x)=x+, (1)求函數(shù)f(x)的定義域; (2)求證:f(x)在其定義域內(nèi)是增函數(shù); (3)求f(x)的值域.解:(1)要使函數(shù)有意義,須l+2xO,解得定義域?yàn)閤≥.(2)任取x1,x2∈[,+∞),且x1x2,則f(x1)f(x2)=x1+x2= (x1x2)+= (x1x2)+= (x1x2
點(diǎn)擊復(fù)制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1