【總結】第六章定積分應用習題課一、定積分應用的類型1.幾何應用?????平面圖形的面積特殊立體的體積平面曲線弧長???旋轉體的體積平行截面面積為已知立體的體積2.物理應用?????變力作功水壓力引力二、構造微元的基本思想及解題步驟1.構造微元的基本思想
2025-01-20 00:54
【總結】?xxd2cosCx?2sin解決方法將積分變量換成令xt2???xxd2costtdcos21??Ct??sin21Cx??2sin21????x2sinx2cos????xxdcosCx?sinx2cos2.2x因為?xd)d(221x
2025-08-05 07:16
【總結】一、第一換元積分法(湊微分法)直接驗證得知,計算方法正確.例1求xxde3?.解被積函數(shù)x3e是復合函數(shù),不能直接套用公式,我們可以把原積分作下列變形后計算:???Cxxxede????xuxxxx3)d(3e31de33令???C
2025-08-01 15:27
【總結】數(shù)學系數(shù)學與應用數(shù)學2010級畢業(yè)論文不等式證明的積分法是利用積分的定義,性質,以及用一些特殊的積分不等式來證明不等式。定積的概念例1設在連續(xù),證明證明將區(qū)間進行等分,取因為兩邊取對數(shù)得兩邊在時取極限得積分中值定理法積分中值定理如果函數(shù)在上連續(xù),則在內(nèi)至少存在一點,使得例2試證當時,.證明因為
2025-07-26 09:48
【總結】第三節(jié)定積分的計算法第五章不定積分換元積分法分部積分法定積分?定積分的計算法第六章二、定積分的分部積分法一、定積分的換元積分法第三節(jié)一、定積分的換元積分法引例求橢圓12222??byax解114SS
2025-07-22 23:06
【總結】().,,.,.,.上冊我們研究了一元函數(shù)一個自變量的函數(shù)及其微分但在許多實際問題中常常會遇到一個變量依賴于多個變量的情形這就提出了多元函數(shù)的概念以及多元函數(shù)的微分和積分問題本章將在一元函數(shù)
2025-01-19 10:12
【總結】第二節(jié)換元積分法從不定積分的定義可以看出,求不定積分的問題實質上就是求原函數(shù)的問題,而能直接求出原函數(shù)的函數(shù)畢竟是少數(shù)tan??cos?(1)dxxdxxxdxxx???????如本節(jié)介紹了利用換元的思想求下不定積分的兩種方法.第一換元法和第二換元法.(一或第湊一換元法微分法)
2025-07-20 21:13
【總結】換元積分法?第一類換元積分法?第二類換元積分法?重點是思路與想法問題?xdx2cos,2sinCx??解決方法利用復合函數(shù),設置中間變量.過程令xt2?,21dtdx???xdx2cosdtt??cos21Ct??sin21.2sin21Cx??一、第一類換元法
2025-08-05 00:08
【總結】不定積分的概念與性質不定積分的換元積分法不定積分的分部積分法積分表的用法第4章不定積分結束前頁結束后頁又如d(secx)=secxtanxdx,所以secx是secxtanx的原函數(shù).定義設f(x)在某區(qū)間上有定義,如果對該區(qū)間的任意點x
2025-07-18 00:00
【總結】第二類換元積分法?二、例題分類講解?一、第二類換元積分法思考:求??dxx11該不定積分不能直接積分,也不屬于常見的湊微分法的類型。該積分矛盾在于被積函數(shù)含有根式,為了去掉根號,我們可以做變量代換,令tx?第二換元積分法解令tx?則2tx?tdtd
2025-08-05 15:45
【總結】第6章定積分211第6章定積分§6.1定積分的概念與性質1.概念定積分表示一個和式的極限01()lim()nbiiaifxdxfx??????????,1lim()nabniinifx??????等分其中:?
2025-01-09 10:11
【總結】......·復習1原函數(shù)的定義。2不定積分的定義。3不定積分的性質。4不定積分的幾何意義?!ひ朐诓欢ǚe分的定義、性質以及基本公式的基礎上,我們進一步來討論不定積分的計算問題,不
2025-08-05 01:29
2025-08-02 23:25
【總結】第三節(jié)分部積分法基本內(nèi)容小結???dxxex利用兩個函數(shù)乘積的求導法則.設函數(shù))(xuu?和)(xvv?具有連續(xù)導數(shù),??,vuvuuv???????,vuuvvu?????,dxvuuvdxvu??????.duvuvudv????問題解決思路分部積分公式一
2025-08-05 18:00
【總結】abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11