【文章內(nèi)容簡(jiǎn)介】
m is different for increasing and decreasing fields. 5. CuC60 granular film is prepared with coevaporation method at room temperature. The conductance of the film is measured by in situ method. The charge transfer from Cu to C60 is investigated with Raman spectroscopy. It is observed that the interaction between C60 and Cu exists at the , which significantly affects the orientational orderdisorder phase transition of C60 and induces the phase transition of C60 in the temperature range from 219K to 248K. The mechanism of the characteristic of such phase transition is discussed. 合作課題 1. 陳 新,博士研究生,中國(guó)科技大學(xué) 課題名稱(chēng):錳基氧化物和隧道結(jié)材料的制備、磁性和輸運(yùn)性質(zhì) 2. 張西祥,助教授,香港科技大學(xué) 課題名稱(chēng):納米材料的磁性和磁電阻 3. 肖 強(qiáng),副教授,美國(guó) Delaware 大學(xué) 課題名稱(chēng):納米結(jié)構(gòu)中的自旋極化輸運(yùn)特性 4. H. Kronm252。ller,教授,德國(guó)馬普學(xué)會(huì)金屬研究所 課題名稱(chēng):鐵磁-反鐵磁耦合機(jī)制的研究 發(fā)表文章 1. Investigation of the radial pression of carbon nanotubes with a scanning probe microscope, W. D. Shen, B. Jiang, B. S. Han, and S. S. Xie, Phys. Rev. Lett., 84 (2020) 3634. 2. Abnormal magoresistance effect in Ag2+?Te silver telluride thin films, B. Q. Liang, X. Chen, Y. J. Wang, and Y. J. Tang, Phys. Rev. B61 (2020) 3239. 3. Structure and magic properties of exchangebiased polycrystalline Fe/MnPd bilayers, Y. J. Tang, B. F. P. Roos, T. Mewes, A. R. Frank, M. Rickart, M. Bauer, S. O. Demokritov, B. Hillebrands, X. Zhou, B. Q. Liang, X. Chen, and W. S. Zhan, Phys. Rev. B62 (2020) 8654. 4. Asymmetry of coercivity dependence on temperature in exchangebiased FeMn/Co bilayers, J. Wang, W. N. Wang, X. Chen, H. W. Zhao, J. G. Zhao, and W. S. Zhan, Appl. Phys. Lett.,77 (2020) 2731. 5. Characteristic of interface effect in CuC60 granular films, X. Li, Y. J. Tang, H. W. Zhao, W. S. Zhan, H. Wang, and J. G. Hou., Appl. Phys. Lett., 77 (2020) 984. 6. In situ conductivity study of the phase transition in Sbdoped C60, X. Li, Y. J. Tang, H. W. Zhao, W. S. Zhan, H. Wang, and J. G. Hou, J. Appl. Phys., 88 (2020) 6931. 7. Exchange anisotropy of epitaxial Fe/MnPd bilayers, Y. J. Tang, X. Zhou, B. Q. Liang, X. Chen, and W. S. Zhan, J. Appl. Phys., 88 (2020) 2054. 8. Perpendicular anisotropy in the amorphous TbCo/Si multilayers, X. Chen, Y. J. Wang, B. Q. Liang, Y. J. Tang, H. W. Zhao, and J. Q. Xiao, J. Appl. Phys., 88 (2020) 6845. 9. Interface structure effects on the Kerr rotation in Co/Pt multilayers, L. H. He, Y. J. Tang, X. Chen, B. Q. Liang, J. Li, Y. J. Wang, and . Chen, Physica Status Solidi A, 181 (2020) 421. 10. Optic and magooptic properties of Pt/Co/Pt/Ni multilayers, H. Wang, Y. S. Zhou, X. Chen, B. Q. Liang, Y. J. Tang, H. W. Zhao, W. S. Zhan, A. L. Wang, W. Zheng, and J. C. Chen, Physica Status Solidi A, 179 (2020) 429. 11. Exchange bias effect and anisotropy analysis of FM/AF bilayers, Y. J. T ang, B. F. P. Roos, T. Mewes, M. Bauer, S. O. Demokritov, , and W. S. Zhan, Materials science amp。 engineering BSolid state materials for advanced technology, B76 (2020) 59. 12. In situ directcurrent conductance investigation of Cu/C60 nanoscale granular films, X. Li, H. Q. Wang, and J. G. Hou, Chin. Phys. Lett., 17 (2020) 360. 13. Formation of multibranched domain in magic gar bubble films, Y. Zhou, D. J. Zheng, D. Li, and B. S. Han, Chin. Phys. Lett., 17 (2020) 52. 14. Anisotropy and coercivity analysis of Fe/MnPd bilayers, Y. J. Tang, B. F. P. Roos, B. Hillebrands, H. W. Zhao, W. S. Zhan, Acta Physica Sinica (in Chinese), 49 (2020) 997. 15. MagoOptical properties of Pt1xMnx/Co Multilayers,B. Q. Liang, X. Chen, X. Zhou, H. Liu, Y. J. Tong, Y. J. Wang, S. Y. Wang, L. R. Chen, Acta physica sinica (in Chinese),49 (2020) 2059.. 國(guó)際會(huì)議論文 1. Domain structure, magic and magooptical properties of Ni intercalated Pt/Co multilayers, H. Wang, Y. J. Tang, X. Li, Z. R. Zhang, H. W. Zhao, W. S. Zhan, Y. S. Zhou. W. Zheng, A. L. Wang, J. C. Chen, and L. R. Chen, Proceedings of The 8th joint MMMIntermag Conference, San Antonio, Texas, January 711, 2020, p. 88. 2. The tunneling magoresistance and magic properties of FeAl2O3 nanogranular films, T. Zhu, Y. J. Wang, H. W. Zhao, J. G. Zhao, and W. S. Zhan, Proceedings of The 8th joint MMMIntermag Conference, San Antonio, Texas, January 711, 2020, p. 160. 3. Exchange bias in CoO/Co/FeMn trilayers, W. N. Wang, J. Wang, X. Chen, H. W. Zhao, W. S. Zhan, and B. G. Shen, Proceedings of The 8th joint MMMIntermag Conference, San Antonio, Texas, January 711, 2020, p. 184. 國(guó)內(nèi)會(huì)議論文 1. 鐵磁性 Fe80Mn16C 薄膜中的磁特性和振蕩行為, 王偉寧、趙宏武、詹文山、 沈保根, 第二屆全國(guó)薄膜與納米磁學(xué)學(xué)術(shù)會(huì)議 , 2020 年 5 月 22 日- 24 日,上海, p. 16。 2. C60/Sb 雙層膜的電導(dǎo)性質(zhì)研究 ,李祥、侯建國(guó), 第二屆全國(guó)薄膜與納米磁學(xué)學(xué)術(shù)會(huì)議 , 2020 年 5 月22 日- 24 日,上海, p. 18。 3. FeMn/Co/Cu/Co 自旋閥體系中的電流平行膜面 (CIP)和電流垂直膜面 (CPP)磁電阻 ,陳新、王偉寧、王晶、趙宏武、沈保根、詹文山, 第二屆全國(guó)薄膜與納米磁學(xué)學(xué)術(shù)會(huì)議 , 2020 年 5 月 22 日- 24 日,上海, p. 25。 4. FeAl2O3顆粒膜磁光 Kerr 角的滲閾效應(yīng) ,朱濤、王蔭君、趙宏 武、詹文山, 第二屆全國(guó)薄膜與納米磁學(xué)學(xué)術(shù)會(huì)議 , 2020 年 5 月 22 日- 24 日,上海, p. 62。 5. Anomalous hysteresis behavior in exchange biased Fe/MnPd bilayers, Y. J. Tang, W. S. Zhan, and C. Y. Wong, 第二屆全國(guó)薄膜與納米磁學(xué)學(xué)術(shù)會(huì)議 , 2020 年 5 月 22 日- 24 日,上海, p. 72。 博士學(xué)位論文 1. 非晶稀土 (Tb、 Gd)過(guò)渡族 (Fe、 Co)合金 /硅多層膜的磁性和層間耦合 ,陳熹, 2020 年 5 月,導(dǎo)師 :王蔭君 2. Ag2+?Te 薄膜體系的磁電阻研究及 PtMn/Co 多層膜的磁和磁光特性研究, 梁冰青, 2020 年 5 月,導(dǎo)師:王蔭君 稀土過(guò)渡族金屬間化合物和氧化物的結(jié)構(gòu)與磁性 組 長(zhǎng): 沈 保 根 研究方向和內(nèi)容 1. 系統(tǒng)研究了 NaZn13 型結(jié)構(gòu)稀土 鐵基化合物的結(jié)構(gòu)、磁性和磁熱效應(yīng),發(fā)現(xiàn)這類(lèi)材料具有優(yōu)越的軟磁性能和高飽和磁化強(qiáng)度,其相變溫度在 100K 至室溫大范圍內(nèi)可調(diào),隨成分的改變表現(xiàn)出一級(jí)和二級(jí)相變性質(zhì),在亞室溫區(qū)和室溫區(qū)均具有大的磁熵變,其磁熵變值隨成份不同可與稀土金屬釓相比或是釓磁熵變的 2 倍以上(見(jiàn)圖 1)。具有一級(jí)相變的稀土 鐵基化合物表現(xiàn)出的巨大磁熵變的直接根源為相變點(diǎn)附近晶胞參數(shù)有 46‰的巨大負(fù)膨脹。 2. 用改進(jìn)的 StonerWohlfarth 模型研究了雙相納米復(fù)合稀土永磁材料及單相納米稀土永磁材料的交換耦合, 計(jì)算 結(jié)果與測(cè)量結(jié)果一致。成功地制備出了高性能 Pr9Fe74Co12GaB5 快淬永磁薄帶,添加 Ga 使兩相之間的交換耦合作用增強(qiáng),磁體的剩磁比、剩磁和磁能積得到很大提高。獲得室溫最大磁能積高達(dá)。用球磨方法成功制備了具有單軸各向異性的 Pr(Co, Ti)7 納米晶永磁材料和 SmCo/?Fe 納米復(fù)合永磁材料,獲得了較好的永磁性能。 3. 系統(tǒng)地研究了成分和工藝對(duì)快淬磁各向異性 SmCo Sm(CoFeCuZr)z 和 Sm(CoZr)7Cy 永磁材料的微結(jié)構(gòu)、織構(gòu)和磁性能的影響,尤其是與磁各向異性的關(guān)系。研究了它們的矯頑力機(jī)理。探討了快淬帶的各向異性形成機(jī)制,以及間隙 C 原子添加對(duì)磁各向異性的影響。圖 2 為各向異性 快淬帶 (002)面的極圖。 4. 在 YMn6Sn6x(Ga, Ti)