freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx年中職數(shù)學(xué)等差數(shù)列說課稿(十一篇)(編輯修改稿)

2025-08-12 21:35 本頁面
 

【文章內(nèi)容簡介】 a3 – a2 =da4 – a3 =d……an – an1=d將這(n1)個等式左右兩邊分別相加,就可以得到 an– a1= (n1) 即 an= a1+(n1) (1)當(dāng)n=1時,(1)也成立,所以對一切n∈n﹡,上面的公式都成立因此它就是等差數(shù)列{}的通項公式。在迭加法的證明過程中,我采用啟發(fā)式教學(xué)方法。利用等差數(shù)列概念啟發(fā)學(xué)生寫出n1個等式。對照已歸納出的通項公式啟發(fā)學(xué)生想出將n1個等式相加。證出通項公式。在這里通過該知識點引入迭加法這一數(shù)學(xué)思想,逐步達(dá)到注重方法,凸現(xiàn)思想 的教學(xué)要求接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n1)2 ,即an=2n1 以此來鞏固等差數(shù)列通項公式運用同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。(三)應(yīng)用舉例這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強(qiáng)對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的ad、n、an這4個量之間的關(guān)系。當(dāng)其中的部分量已知時,可根據(jù)該公式求出另一部分量。例1 (1)求等差數(shù)列8,5,2,…的第20項;第30項;第40項(2)401是不是等差數(shù)列5,9,13,…的項?如果是,是第幾項?在第一問中我添加了計算第30項和第40項以加強(qiáng)鞏固等差數(shù)列通項公式;第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式an例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d.在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對通項公式的鞏固例3 是一個實際建模問題建造房屋時要設(shè)計樓梯,已知某大樓第2層的樓底離地面的高度為3米,若樓梯設(shè)計為等高的16級臺階,問每級臺階高為多少米?這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意每級臺階等高使學(xué)生想到每級臺階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實際問題轉(zhuǎn)化為數(shù)學(xué)模型等差數(shù)列:(學(xué)生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數(shù)學(xué)生認(rèn)為是16項,應(yīng)明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)設(shè)置此題的目的:,激發(fā)了學(xué)生的興趣;從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說明實際問題的數(shù)學(xué)建模的數(shù)學(xué)思想方法(四)反饋練習(xí)小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時間內(nèi)完成)。目的:使學(xué)生熟悉通項公式,對學(xué)生進(jìn)行基本技能訓(xùn)練。書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。目的:對學(xué)生加強(qiáng)建模思想訓(xùn)練。若數(shù)例{} 是等差數(shù)列,若 = ,(為常數(shù))試證明:數(shù)列{}是等差數(shù)列此題是對學(xué)生進(jìn)行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時強(qiáng)化了等差數(shù)列的概念。(五)歸納小結(jié)(由學(xué)生總結(jié)這節(jié)課的收獲)。強(qiáng)調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù) an= a1+(n1) 會知三求一數(shù)學(xué)建模思想方法解決實際問題(六)布置作業(yè)必做題:課本p114 ,6 題選做題:已知等差數(shù)列{an}的首項a1= 24,從第10項開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)五、板書設(shè)計在板書中突出本節(jié)重點,將強(qiáng)調(diào)的地方如定義中,從第二項起及同一常數(shù)等幾個字用紅色粉筆標(biāo)注,同時給學(xué)生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學(xué)方法。167。 等差數(shù)列一、等差數(shù)列定義注:從第二項起及同一常數(shù)用紅色粉筆標(biāo)注二、等差數(shù)列的通項公式例題與練習(xí)中職數(shù)學(xué)等差數(shù)列說課稿篇七尊敬的各位專家、評委:上午好!我叫鄭永鋒,來自安慶師范學(xué)院。今天我說課的課題是人教a版必修5第二章第三節(jié)《等差數(shù)列的前n項和》。我嘗試?yán)眯抡n標(biāo)的理念來指導(dǎo)教學(xué),對于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標(biāo)分析、教法學(xué)法分析、教學(xué)過程分析和評價分析五個方面來談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設(shè)計,敬請各位專家、評委批評指正。數(shù)列是刻畫離散現(xiàn)象的函數(shù),是一種重要的屬性模型。人們往往通過離散現(xiàn)象認(rèn)識連續(xù)現(xiàn)象,因此就有必要研究數(shù)列。高中數(shù)列研究的主要對象是等差、等比兩個基本數(shù)列。本節(jié)課的教學(xué)內(nèi)容是等差數(shù)列前n項和公式的推導(dǎo)及其簡單應(yīng)用。在推導(dǎo)等差數(shù)列前n項和公式的過程中,采用了:1從特殊到一般的研究方法;2倒敘相加求和。不僅得出來等差數(shù)列前n項和公式,而且對以后推導(dǎo)等比數(shù)列前n項和公式有一定的啟發(fā),也是一種常用的數(shù)學(xué)思想方法。等差數(shù)列的前n項和是學(xué)習(xí)極限、微積分的基礎(chǔ),與數(shù)學(xué)課程的其他內(nèi)容(函數(shù)、三角、不等式等)有著密切的聯(lián)系。(一)、教學(xué)目標(biāo)知識與技能掌握等差數(shù)列的前n項和公式,能較熟練應(yīng)用等差數(shù)列的前n項和公式求和。過程與方法經(jīng)歷公式的推導(dǎo)過程,體會數(shù)形結(jié)合的數(shù)學(xué)思想,體驗從特殊到一般的`研究方法,學(xué)會觀察、歸納、反思。情感、態(tài)度與價值觀獲得發(fā)現(xiàn)的成就感,逐步養(yǎng)成科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,提高代數(shù)推理的能力。重點:等差數(shù)列的前n項和公式。難點:獲得等差數(shù)列的前n項和公式推導(dǎo)的思路。教學(xué)過程分為問題呈現(xiàn)階段、探索與發(fā)現(xiàn)階段、應(yīng)用知識階段。探索與發(fā)現(xiàn)公式推導(dǎo)的思路是教學(xué)的重點。如果直接介紹“倒敘相加”求和,無疑就像波利亞所說的“帽子里跳出來的兔子”。所以在教學(xué)中采用以問題驅(qū)動、層層鋪墊,從特殊到一般啟發(fā)學(xué)生獲得公式的推導(dǎo)方法。應(yīng)用公式也是教學(xué)的重點。為了讓學(xué)生較熟練掌握公式,可采用設(shè)計變式題的教學(xué)手段,通過“選擇公式”,“變用公式”,“知三求二”三個層次來促進(jìn)學(xué)生新的認(rèn)知結(jié)構(gòu)的形成。建構(gòu)主義學(xué)習(xí)理論認(rèn)為,學(xué)習(xí)是學(xué)生積極主動地建構(gòu)知識的過程,學(xué)習(xí)應(yīng)該與學(xué)生熟悉的背景相聯(lián)系。在教學(xué)中,讓學(xué)生在問題情境中,經(jīng)歷知識的形成和發(fā)展,通過觀察、操作、歸納、探索、交流、反思參與學(xué)習(xí),認(rèn)識和理解數(shù)學(xué)知識,學(xué)會學(xué)習(xí),發(fā)展能力。問題呈現(xiàn)階段泰姬陵坐落于印度古都阿格,是世界七大奇跡之一。傳說陵寢中有一個三角形圖案,以相同大小的圓寶石鑲飾而成共有100層。你知道這個圖案一共花了多少寶石嗎?設(shè)計意圖:(1)、源于歷史,富有人文氣息。(2)、承上啟下,探討高斯算法。探究發(fā)現(xiàn)階段(1)、學(xué)生敘述高斯首尾配對的方法(學(xué)生對高斯的算法是熟悉的,知道采用首尾配對的方法來求和,但是他們對這種方法的認(rèn)識可能處于模仿、記憶的階段。)(2)、為了促進(jìn)學(xué)生對這種算法的進(jìn)一步理解,設(shè)計了下面的問題。問題1:圖案中,第1層到第21層共有多少顆寶石?(這是奇數(shù)個項和的問題,不能簡單模仿偶數(shù)個項求和的方法,需要把中間項11看成是首、尾兩項1和21的等差中項。通過前后比較得出認(rèn)識:高斯“首尾配對”的算法還得分奇數(shù)、偶數(shù)個項的情況求和。(3)、進(jìn)而提出有無簡單的方法。借助幾何圖形的直觀性,引導(dǎo)學(xué)生使用熟悉的幾何方法:把“全等三角形”倒置,與原圖補(bǔ)成平行四邊形。獲得算法:s21=設(shè)計意圖:幾何直觀能啟迪思路,幫助理解,因此,借助幾何直觀學(xué)習(xí)和理解數(shù)學(xué),是數(shù)學(xué)學(xué)習(xí)中的重要方面,只有做到了直觀上的理解,才是真正的理解。因此在教學(xué)中,要鼓勵學(xué)生借助幾何直觀進(jìn)行思考,揭示研究對象的性質(zhì)和關(guān)系,從而滲透了數(shù)形結(jié)合的數(shù)學(xué)思想。問題2:求1到n的正整數(shù)之和。即sn=1+2+3+…+n∵sn=n+(n—1)+(n—2)+…+1∴2sn=(n+1)+(n+1)+…。+(n+1)sn=(從求確定的前n個正整數(shù)之和到求一般項數(shù)的前n個正整數(shù)之和,旨在讓學(xué)生體驗“倒敘相加求和”這一算法的合理性,從心理上完成對“首尾配對求和”算法的改進(jìn))由于前面的鋪墊,學(xué)生容易得出如下過程:∵sn=an+an—1+an—2+…a1,∴sn=。圖形直觀等差數(shù)列的性質(zhì)(如果m+n=p+q,那么am+an=ap+aq。)設(shè)計意圖:一言以蔽之,數(shù)學(xué)教學(xué)應(yīng)努力做到:以簡馭繁,平實近人,退樸歸真,循循善誘,引人入勝。公式應(yīng)用階段(1)、選用公式公式1sn=;公式2sn=na1+。(2)、變用公式(3)、知三求二某長跑運動員7天里每天的訓(xùn)練量如下7500m,8000m,8500m,9000m,9500m,10000m,10500m。這位長跑運動員7天共跑了多少米?(本例提供了許多數(shù)據(jù)信息,學(xué)生可以從首項、尾項、項數(shù)出發(fā),使用公式1,也可以從首項、公差、項數(shù)出發(fā),使用公式2求和。達(dá)到學(xué)生熟悉公式的要素與結(jié)構(gòu)的教學(xué)目的。通過兩種方法的比較,引導(dǎo)學(xué)生應(yīng)該根據(jù)信息選擇適當(dāng)?shù)墓剑员阌谟嬎?。)等差?shù)列—10,—6,—2,2,…的前多少項和為54?(本例已知首項,前n項和、并且可以求出公差,利用公式2求項數(shù)。事實上,在兩個求和公式中包含四個元素,從方程的角度,知三必能求余一。)變式練習(xí):在等差數(shù)列{an}中,a1=20,an=54,sn=999,求n。知三求二:在等差數(shù)列{an}中,已知d=20,n=37,sn=629,求a1及an。(本例是使用等差數(shù)列的求和公式和通項公式求未知元。事實上,在求和公式、通項公式中共有首項、公差、項數(shù)、尾項、前n項和五個元素,如果已知其中三個,連列方程組,就可以求出其余兩個。)當(dāng)堂訓(xùn)練,鞏固深化。通過學(xué)生的主體性參與,使學(xué)生深刻體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識的再次深化。采用課后習(xí)題1,2,3。小結(jié)歸納,回顧反思。小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結(jié)。(1)、課堂小結(jié)①、回顧從特殊到一般的研究方法;②、體會等差數(shù)列的基本元素的表示方法,倒敘相加的算法,以及數(shù)形結(jié)合的數(shù)學(xué)思想。③、掌握等差數(shù)列的兩個球和公式及簡單應(yīng)用(2)、反思我設(shè)計了三個問題①、通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識?②、通過本節(jié)課的學(xué)習(xí),你最大的體驗是什么?③、通過本節(jié)課的學(xué)習(xí),你掌握了哪些技能?作業(yè)分為必做題和選做題,必做題是對本節(jié)課學(xué)生知識水平的反饋,選做題是對本節(jié)課內(nèi)容的延伸與連貫,強(qiáng)調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生的自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成。我設(shè)計了以下作業(yè):必做題:課本p118,練習(xí)1,2,3;習(xí)題3。3第2題(3,4)。選做題:在等差數(shù)列中,(1)、已知a2+a5+a12+a15=36,求是s16。(2)、已知a6=20,求s11。(三)、板書設(shè)計板書要基本體現(xiàn)課堂的內(nèi)容和方法,體現(xiàn)課堂進(jìn)程,能簡明扼要反映知識結(jié)構(gòu)及其相互關(guān)系:能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進(jìn)程更加連貫。學(xué)生學(xué)習(xí)的結(jié)果評價固然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價。我采用了及時點評、延時點評與學(xué)生互評相結(jié)合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學(xué)生是否有積極的情感態(tài)度和頑強(qiáng)的理性精神,在概念反思過程中評價學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對本節(jié)是否有一個完整的集訓(xùn),并進(jìn)行及時的調(diào)整和補(bǔ)充。以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正。謝謝!中職數(shù)學(xué)等差數(shù)列說課稿篇八本節(jié)知識的學(xué)習(xí)既能加深對數(shù)列概念的理解,又為后面學(xué)習(xí)數(shù)列有關(guān)知識提供研究的方法,具有承上啟下的重要作用。而且等差數(shù)列求和在現(xiàn)實中有著廣泛的應(yīng)用,同時本節(jié)課的學(xué)習(xí)還蘊涵著倒序相加、數(shù)形結(jié)合、方程思想等深刻的數(shù)學(xué)思想方法。知識基礎(chǔ):學(xué)生已掌握了函數(shù)、數(shù)列等有關(guān)基礎(chǔ)知識,并且在小學(xué)和初中已了解特殊的數(shù)列求和。能力基礎(chǔ):高二學(xué)生已初步具備邏輯思維能力,能在教師的引導(dǎo)下解決問題,但處理抽象問題的能力還有待進(jìn)一步提高。依據(jù)課標(biāo),以及學(xué)生現(xiàn)有知識和本節(jié)教學(xué)內(nèi)容,制定教學(xué)目標(biāo)如下:(1)知識與技能目標(biāo):(?。?初步掌握等差數(shù)列的前項和公式及推導(dǎo)方法;(ⅱ) 當(dāng)以下5個量(a1,d,n,an,sn)中已知三個量時,能熟練運用通項公式、前n項和公式求其余兩個量。(2)過程與方法目標(biāo):通過公式的推導(dǎo)和公式的應(yīng)用,使學(xué)生體會數(shù)形結(jié)合的思想方法
點擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1