freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

淄博市八年級數(shù)學(xué)試卷易錯易錯壓軸勾股定理選擇題訓(xùn)練經(jīng)典題目(含答案)(5)(編輯修改稿)

2025-04-02 04:34 本頁面
 

【文章內(nèi)容簡介】 .∵BD=CD,H是BC邊的中點,∴DH是BC的中垂線,∴BG=CG, 在Rt△CGE中有:CG2=CE2+GE2,∴CE2+GE2=BG2.故(4)正確.綜上所述,正確的結(jié)論由3個.故選C.【點睛】本題考查全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),平行線的性質(zhì),勾股定理,熟練掌握三角形全等的判定方法并作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.4.D解析:D【解析】【分析】先利用勾股定理計算BC的長度,然后陰影部分的面積=以AB為直徑的半圓面積+以BC為直徑的半圓面積+以AC為直徑的半圓面積.【詳解】解:在中∵,,∴,∴BC=3, ∴陰影部分的面積=以AB為直徑的半圓面積+以BC為直徑的半圓面積+以AC為直徑的半圓面積=.【點睛】.5.C解析:C【分析】根據(jù)勾股定理即可得到正方形A的面積加上B的面積加上C的面積和D的面積是E的面積.即可求解.【詳解】四個正方形的面積的和是正方形E的面積:即;故答案為C.【點睛】理解正方形A,B,C,D的面積的和是E的面積是解決本題的關(guān)鍵.6.D解析:D【分析】根據(jù)已知設(shè)AC=x,BC=y(tǒng),在Rt△ACD和Rt△BCE中,根據(jù)勾股定理分別列等式,從而求得AC,BC的長,最后根據(jù)勾股定理即可求得AB的長.【詳解】如圖,在△ABC中,∠C=90176。,AD、BE為△ABC的兩條中線,且AD=2,BE=5,求AB的長.設(shè)AC=x,BC=y(tǒng),根據(jù)勾股定理得:在Rt△ACD中,x2+(y)2=(2)2,在Rt△BCE中,(x)2+y2=52,解之得,x=6,y=4,∴在Rt△ABC中, ,故選:D.【點睛】此題考查勾股定理的運用,在直角三角形中,已知兩條邊長時,可利用勾股定理求第三條邊的長度.7.D解析:D【分析】過點C作CH⊥AB,連接CD,根據(jù)等腰三角形的三線合一的性質(zhì)及勾股定理求出CH,再利用即可求出答案.【詳解】如圖,過點C作CH⊥AB,連接CD, ∵AC=BC,CH⊥AB,AB=8,∴AH=BH=4,∵AC=5,∴,∵,∴,∴,∴DE+DF=,故選:D.【點睛】此題考查等腰三角形三線合一的性質(zhì),勾股定理解直角三角形,根據(jù)題意得到的思路是解題的關(guān)鍵,依此作輔助線解決問題.8.C解析:C【分析】將容器側(cè)面展開,建立A關(guān)于上邊沿的對稱點A’,根據(jù)兩點之間線段最短可知A’B的長度為最短路徑15,構(gòu)造直角三角形,依據(jù)勾股定理可以求出底面周長的一半,乘以2即為所求.【詳解】解:如圖,將容器側(cè)面展開,作A關(guān)于EF的對稱點,連接,則即為最短距離,根據(jù)題意:,.所以底面圓的周長為92=18cm.故選:C.【點睛】本題考查了平面展開——最短路徑問題,將圖形展開,利用軸對稱的性質(zhì)和勾股定理進(jìn)行計算是解題的關(guān)鍵.9.C解析:C【解析】試題解析:作點關(guān)于直線的對稱點,連接并延長,與直線的交點即為使得取最大值時對應(yīng)的點此時過點作于點如圖,四邊形為矩形,的最大值為:故答案為:10.D解析:D【分析】根據(jù)勾股定理的逆定理,三角形的內(nèi)角和定理,分別對每個選項進(jìn)行判斷,即可得到答案.【詳解】解:∵,得,符合勾股定理逆定理,則①正確;∵,得到,符合勾股定理逆定理,則②正確;∵∠A=∠B∠C,得∠B=∠A+∠C,∵∠A+∠B+∠C=180176。,∴∠B=90176。,故③正確;∵∠A∶∠B∶∠C=1∶2∶3,∠A+∠B+∠C=180176。,∴,故④正確;∵,則⑤不能構(gòu)成直角三角形,故⑤錯誤;∵,則⑥能構(gòu)成直角三角形,故⑥正確;∴能構(gòu)成直角三角形的有5個;故選擇:D.【點睛】本題考查了勾股定理的逆定理,以及三角形的內(nèi)角和定理,解題的關(guān)鍵是熟練掌握用勾股定理的逆定理和三角形內(nèi)角和定理進(jìn)行判斷三角形是直角三角形.11.A解析:A【分析】先根據(jù)角平分線的定義、角的和差可得,再根據(jù)平行線的性質(zhì)、等量代換可得,然后根據(jù)等腰三角形的定義可得,從而可得,最后在中,利用勾股定理即可得.【詳解】平分,平分,,,,在中,由勾股定理得:,故選:A.【點睛】本題考查了角平分線的定義、平行線的性質(zhì)、等腰三角形的定義、勾股定理等知識點,熟練掌握等腰三角形的定義是解題關(guān)鍵.12.B解析:B【分析】本題考查三角形的中線定義,根據(jù)條件先確定ABC為直角三角形,再根據(jù)勾股定理求得 ,最后根據(jù)求解即可.【詳解】解:如圖,在中,邊上的中線,∵CD=3,AB= 6,∴CD=3,AB= 6,∴CD= AD= DB , ,∵,∴,∴是直角三角形,∴,又∵,∴,∴,又∵,∴,故選B.【點
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1