freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學備考之二次函數(shù)壓軸突破訓練∶培優(yōu)-易錯-難題篇及答案(1)(編輯修改稿)

2025-04-02 00:03 本頁面
 

【文章內(nèi)容簡介】 0)=10x2+(10a+700)x500a10000(30≤x≤38)求得對稱軸為x=35+a,且0<a≤6,則30<35+a≤38,則當時,取得最大值,解方程得到a1=2,a2=58,于是得到a=2.【詳解】解:(1)根據(jù)題意得,;(2)設每天扣除捐贈后可獲得利潤為元.對稱軸為x=35+a,且0<a≤6,則30<35+a ≤38,則當時,取得最大值,∴∴(不合題意舍去),∴.【點睛】本題考查了二次函數(shù)的應用,難度較大,最大銷售利潤的問題常利用函數(shù)的增減性來解答,正確的理解題意,確定變量,建立函數(shù)模型.8.如圖,在直角坐標系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.(1)求這個二次函數(shù)的解析式;(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標;(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90176。?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由.【答案】(1)y=x2﹣3x。(2)點B的坐標為:(4,4)。(3)存在;理由見解析;【解析】【分析】(1)將原點坐標代入拋物線中即可求出k的值,從而求得拋物線的解析式。(2)根據(jù)(1)得出的拋物線的解析式可得出A點的坐標,也就求出了OA的長,根據(jù)△OAB的面積可求出B點縱坐標的絕對值,然后將符合題意的B點縱坐標代入拋物線的解析式中即可求出B點的坐標,然后根據(jù)B點在拋物線對稱軸的右邊來判斷得出的B點是否符合要求即可。(3)根據(jù)B點坐標可求出直線OB的解析式,由于OB⊥OP,由此可求出P點的坐標特點,代入二次函數(shù)解析式可得出P點的坐標.求△POB的面積時,求出OB,OP的長度即可求出△BOP的面積?!驹斀狻拷猓海?)∵函數(shù)的圖象與x軸相交于O,∴0=k+1,∴k=﹣1?!噙@個二次函數(shù)的解析式為y=x2﹣3x。(2)如圖,過點B做BD⊥x軸于點D,令x2﹣3x=0,解得:x=0或3。∴AO=3?!摺鰽OB的面積等于6,∴AO?BD=6。∴BD=4?!唿cB在函數(shù)y=x2﹣3x的圖象上,∴4=x2﹣3x,解得:x=4或x=﹣1(舍去)。又∵頂點坐標為:( ,﹣),<4,∴x軸下方不存在B點?!帱cB的坐標為:(4,4)。(3)存在?!唿cB的坐標為:(4,4),∴∠BOD=45176。若∠POB=90176。,則∠POD=45176。設P點坐標為(x,x2﹣3x)?!?。若,解得x=4 或x=0(舍去)。此時不存在點P(與點B重合)。若,解得x=2 或x=0(舍去)。當x=2時,x2﹣3x=﹣2?!帱cP 的坐標為(2,﹣2)?!唷!摺螾OB=90176。,∴△POB的面積為:PO?BO==8。9.如圖,關于x的二次函數(shù)y=x2+bx+c的圖象與x軸交于點A(1,0)和點B與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.(1)求二次函數(shù)的表達式; (2)在y軸上是否存在一點P,使△PBC為等腰三角形?若存在.請求出點P的坐標; (3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.【答案】(1)二次函數(shù)的表達式為:y=x2﹣4x+3;(2)點P的坐標為:(0,3+3)或(0,3﹣3)或(0,3)或(0,0);(3)當點M出發(fā)1秒到達D點時,△MNB面積最大,最大面積是1.此時點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.【解析】【分析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程組,解方程組即可得二次函數(shù)的表達式;(2)先求出點B的坐標,再根據(jù)勾股定理求得BC的長,當△PBC為等腰三角形時分三種情況進行討論:①CP=CB;②BP=BC;③PB=PC;分別根據(jù)這三種情況求出點P的坐標;(3)設AM=t則DN=2t,由AB=2,得BM=2﹣t,S△MNB=(2﹣t)2t=﹣t2+2t,把解析式化為頂點式,根據(jù)二次函數(shù)的性質(zhì)即可得△MNB最大面積;此時點M在D點,點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.【詳解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函數(shù)的表達式為:y=x2﹣4x+3;(2)令y=0,則x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,點P在y軸上,當△PBC為等腰三角形時分三種情況進行討論:如圖1,①當CP=CB時,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②當PB=PC時,OP=OB=3,∴P3(0,3);③當BP=BC時,∵OC=OB=3∴此時P與O重合,∴P4(0,0);綜上所述,點P的坐標為:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);(3)如圖2,設AM=t,由AB=2,得BM=2﹣t,則DN=2t,∴S△MNB=(2﹣t)2t=﹣t2+2t=﹣(t﹣1)2+1,當點M出發(fā)1秒到達D點時,△MNB面積最大,最大面積是1.此時點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.10.如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣3,0),B(1,0),C(0,3)三點.(1)求拋物線的函數(shù)表達式;(2)如圖1,P為拋物線上在第二象限內(nèi)的一點,若△PAC面積為3,求點P的坐標;(3)如圖2,D為拋物線的頂點,在線段AD上是否存在點M,使得以M,A,O為頂點的三角形與△ABC相似?若存在,求點M的坐標;若不存在,請說明理由.【答案】(1)y=﹣x2﹣2x+3;(2)點P的坐標為(﹣1,4)或(﹣2,3);(3)存在,(,)或(,),見解析.【解析】【分析】(1)利用待定系數(shù)法,然后將A、B、C的坐標代入解析式即可求得二次函數(shù)的解析式;(2))過P點作PQ垂直x軸,交AC于Q,把△APC分成兩個△APQ與△CPQ,把PQ作為兩個三角形的底,通過點A,C的橫坐標表示出兩個三角形的高即可求得三角形的面積.(3)通過三角形函數(shù)計算可得∠DAO=∠ACB,使得以M,A,O為頂點的三角形與△ABC相似,則有兩種情況,∠AOM=∠CAB=45176。,即OM為y=x,若∠AOM=∠CBA,則OM為y=3x+3,然后由直線解析式可求OM與AD的交點M.【詳解】(1)把A(﹣3,0),B(1,0),C(0,3)代入拋物線解析式y(tǒng)=ax2+bx+c得,解得,所以拋物線的函數(shù)表達式為y=﹣x2﹣2x+3.(2)如解(2)圖1,過P點作PQ平行y軸,交AC于Q點,∵A(﹣3,0),C(0,3),∴直線AC解析式為y=x+3,設P點坐標為(x,﹣x2﹣2x+3.),則Q點坐標為(x,
點擊復制文檔內(nèi)容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1