【文章內(nèi)容簡介】
得OE=OB,即可證得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中點(diǎn),則可以求得△ABE、△ABF的面積,根據(jù)S四邊形CDOF=S矩形ABCD2S△ABF即可求解.探究:畫出符合條件的兩種情況:①求出四邊形A′DCB是平行四邊形,求出BC和A′D推出∠ACB=90176。,根據(jù)三角形面積公式求出即可;②求出高CQ,求出△A′DC的面積.即可求出△ABC的面積.試題解析:(1)∵四邊形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四邊形ABFE是平行四邊形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB與△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四邊形CDOF=S矩形ABCD2S△ABF=46243=12.探究:解:分為兩種情況:①如圖1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折疊A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD與△ABC重合部分的面積等于△ABC面積的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四邊形A′DCB是平行四邊形,∴BC=A′D=2,過B作BM⊥AC于M,∵AB=4,∠BAC=30176。,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90176。,由勾股定理得:AC=,∴△ABC的面積是BCAC=22=2;②如圖2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折疊A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD與△ABC重合部分的面積等于△ABC面積的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四邊形A′BDC是平行四邊形,∴A′C=BD=2,過C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30176。,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2A′DCQ=221=2;即△ABC的面積是2或2.考點(diǎn):四邊形綜合題.9.(1)問題發(fā)現(xiàn)如圖1,點(diǎn)E.F分別在正方形ABCD的邊BC、CD上,∠EAF=45176。,連接EF、則EF=BE+DF,試說明理由;(2)類比引申如圖2,在四邊形ABCD中,AB=AD,∠BAD=90176。,點(diǎn)E.F分別在邊BC、CD上,∠EAF=45176。,若∠B,∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系 時(shí),仍有EF=BE+DF;(3)聯(lián)想拓展如圖3,在△ABC中,∠BAC=90176。,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45176。,猜想BD、DE、EC滿足的等量關(guān)系,并寫出推理過程?!敬鸢浮浚?)詳見解析;(2)詳見解析;(3)詳見解析.【解析】試題分析:(1)把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90176。至△ADG,可使AB與AD重合,證出△AFG≌△AFE,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;(2)把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90176。至△ADG,可使AB與AD重合,證出△AFE≌△AFG,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;(3)把△ACE旋轉(zhuǎn)到ABF的位置,連接DF,證明△AFE≌△AFG(SAS),則EF=FG,∠C=∠ABF=45176。,△BDF是直角三角形,根據(jù)勾股定理即可作出判斷.試題解析:(1)理由是:如圖1,∵AB=AD,∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,如圖1,∵∠ADC=∠B=90°,∴∠FDG=180°,點(diǎn)F. D. G共線,則∠DAG=∠BAE,AE=AG,∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90°?45°=45°=∠EAF,即∠EAF=∠FAG,在△EAF和△GAF中,AF=AF,∠EAF=∠GAF,AE=AG,∴△AFG≌△AFE(SAS),∴EF=FG=BE+DF;(2)∠B+∠D=180°時(shí),EF=BE+DF;∵AB=AD,∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,如圖2,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC+∠B=180°,∴∠FDG=180°,點(diǎn)F. D. G共線,在△AFE和△AFG中,AE=AG,∠FAE=∠FAG,AF=AF,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF,故答案為:∠B+∠ADC=180°;(3)BD2+CE2=DE2.理由是:把△ACE旋轉(zhuǎn)到ABF的位置,連接DF,則∠FAB=∠CAE.∵∠BAC=90°,∠DAE=45°,∴∠BAD+∠CAE=45°,又∵∠FAB=∠CAE,∴∠FAD=∠DAE=45°,則在△ADF和△ADE中,AD=AD,∠FAD=∠DAE,AF=AE,∴△ADF≌△ADE,∴DF=DE,∠C=∠ABF=45°,∴∠BDF=90°,∴△BDF是直角三角形,∴BD2+BF2=DF2,∴BD2+CE2=DE2.10.(問題發(fā)現(xiàn))(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關(guān)系為 ??;(拓展探究)(2)如圖(2)在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點(diǎn)M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60176。,得到正方形AB39。C39。D39。,請直接寫出BD39。平方的值.【答案】(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【解析】【分析】(1)依據(jù)點(diǎn)A在線段BD的垂直平分線上,點(diǎn)C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據(jù)Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),可得AF=CF=BF,再根據(jù)等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,進(jìn)而得出∠AMF=∠MAN=∠ANF=90176。,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點(diǎn)A為