freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx九年級(jí)數(shù)學(xué)平行四邊形的專項(xiàng)培優(yōu)易錯(cuò)試卷練習(xí)題(含答案)含答案(編輯修改稿)

2025-03-30 22:22 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 ,GF⊥BC于點(diǎn)F,連結(jié)AG.(1)寫出線段AG,GE,GF長(zhǎng)度之間的數(shù)量關(guān)系,并說(shuō)明理由;(2)若正方形ABCD的邊長(zhǎng)為1,∠AGF=105176。,求線段BG的長(zhǎng).【答案】(1)AG2=GE2+GF2(2)【解析】試題分析:(1)結(jié)論:AG2=GE2+GF2.只要證明GA=GC,四邊形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可證明;(2)作BN⊥AG于N,在BN上截取一點(diǎn)M,使得AM=BM.設(shè)AN=x.易證AM=BM=2x,MN=x,在Rt△ABN中,根據(jù)AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根據(jù)BG=BN247。cos30176。即可解決問(wèn)題.試題解析:(1)結(jié)論:AG2=GE2+GF2.理由:連接CG.∵四邊形ABCD是正方形,∴A、C關(guān)于對(duì)角線BD對(duì)稱,∵點(diǎn)G在BD上,∴GA=GC,∵GE⊥DC于點(diǎn)E,GF⊥BC于點(diǎn)F,∴∠GEC=∠ECF=∠CFG=90176。,∴四邊形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一點(diǎn)M,使得AM=BM.設(shè)AN=x.∵∠AGF=105176。,∠FBG=∠FGB=∠ABG=45176。,∴∠AGB=60176。,∠GBN=30176。,∠ABM=∠MAB=15176。,∴∠AMN=30176。,∴AM=BM=2x,MN=x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+x)2,解得x=,∴BN=,∴BG=BN247。cos30176。=.考點(diǎn):正方形的性質(zhì),矩形的判定和性質(zhì),勾股定理,直角三角形30度的性質(zhì)9.小明在矩形紙片上畫正三角形,他的做法是:①對(duì)折矩形紙片ABCD(ABBC),使AB與DC重合,得到折痕EF,把紙片展平;②沿折痕BG折疊紙片,使點(diǎn)C落在EF上的點(diǎn)P處,再折出PB、PC,最后用筆畫出△PBC(圖1).(1)求證:圖1中的 PBC是正三角形: (2)如圖2,小明在矩形紙片HIJK上又畫了一個(gè)正三角形IMN,其中IJ=6cm,且HM=JN.①求證:IH=IJ②請(qǐng)求出NJ的長(zhǎng); (3)小明發(fā)現(xiàn):在矩形紙片中,若一邊長(zhǎng)為6cm,當(dāng)另一邊的長(zhǎng)度a變化時(shí),在矩形紙片上總能畫出最大的正三角形,但位置會(huì)有所不同.請(qǐng)根據(jù)小明的發(fā)現(xiàn),畫出不同情形的示意圖(作圖工具不限,能說(shuō)明問(wèn)題即可),并直接寫出對(duì)應(yīng)的a的取值范圍.【答案】(1)證明見(jiàn)解析;(2)①證明見(jiàn)解析;②126(3)3<a<4,a>4【解析】分析:(1)由折疊的性質(zhì)和垂直平分線的性質(zhì)得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”證Rt△IHM≌Rt△IJN即可得;②IJ上取一點(diǎn)Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15176。,繼而可得∠NQJ=30176。,設(shè)NJ=x,則IQ=QN=2x、QJ=x,根據(jù)IJ=IQ+QJ求出x即可得;(3)由等邊三角形的性質(zhì)、直角三角形的性質(zhì)、勾股定理進(jìn)行計(jì)算,畫出圖形即可.(1)證明:∵①對(duì)折矩形紙片ABCD(ABBC),使AB與DC重合,得到折痕EF∴PB=PC∵沿折痕BG折疊紙片,使點(diǎn)C落在EF上的點(diǎn)P處∴PB=BC∴PB=PC=BC∴△PBC是正三角形:(2)證明:①如圖∵矩形AHIJ∴∠H=∠J=90176?!摺鱉NJ是等邊三角形∴MI=NI在Rt△MHI和Rt△JNI中 ∴Rt△MHI≌Rt△JNI(HL)∴HI=IJ②在線段IJ上取點(diǎn)Q,使IQ=NQ∵Rt△IHM≌Rt△IJN,∴∠HIM=∠JIN,∵∠HIJ=90176。、∠MIN=60176。,∴∠HIM=∠JIN=15176。,由QI=QN知∠JIN=∠QNI=15176。,∴∠NQJ=30176。,設(shè)NJ=x,則IQ=QN=2x,QJ=x,∵IJ=6cm,∴2x+x=6,∴x=126,即NJ=126(cm).(3)分三種情況:①如圖:設(shè)等邊三角形的邊長(zhǎng)為b,則0<b≤6,則tan60176。=,∴a=,∴0<b≤=;②如圖當(dāng)DF與DC重合時(shí),DF=DE=6,∴a=sin60176。DE==,當(dāng)DE與DA重合時(shí),a=,∴<a<;③如圖∵△DEF是等邊三角形∴∠FDC=30176?!郉F=∴a>點(diǎn)睛:本題是四邊形的綜合題目,考查了折疊的性質(zhì)、等邊三角形的判定與性質(zhì)、旋轉(zhuǎn)的性質(zhì)、直角三角形的性質(zhì)、正方形的性質(zhì)、全等三角形的判定與性質(zhì)等知識(shí);本題綜合性強(qiáng),難度較大.10.如圖1,在長(zhǎng)方形紙片ABCD中,AB=mAD,其中m?1,將它沿EF折疊(點(diǎn)E.F分別在邊AB、CD上),使點(diǎn)B落在AD邊上的點(diǎn)M處,點(diǎn)C落在點(diǎn)N處,MN與CD相交于點(diǎn)P,其中0n?1.(1)如圖2,當(dāng)n=1(即M點(diǎn)與D點(diǎn)重合),求證:四邊形BEDF為菱形;(2)如圖3,當(dāng)(M為AD的中點(diǎn)),m的值發(fā)生變化時(shí),求證:EP=AE+DP;(3)如圖1,當(dāng)m=2(即AB=2AD),n的值發(fā)生變化時(shí),的值是否發(fā)生變化?說(shuō)明理由.【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)值不變,理由見(jiàn)解析.【解析】試題分析:(1)由條件可知,當(dāng)n=1(即M點(diǎn)與D點(diǎn)重合),m=2時(shí),AB=2AD,設(shè)AD=a,則AB=2a,由矩形的性質(zhì)可以得出△ADE≌△NDF,就可以得出AE=NF,DE=DF,在Rt△AED中,由勾股定理就可以表示出AE的值,再求出BE的值就可以得出結(jié)論.(2)延長(zhǎng)PM交EA延長(zhǎng)線于G,由條件可以得出△PDM≌△GAM,△EMP≌△EMG由全等三角形的性質(zhì)就可以得出結(jié)論.(3)如圖1,連接BM交EF于點(diǎn)Q,過(guò)點(diǎn)F作FK⊥AB于點(diǎn)K,交BM于點(diǎn)O,通過(guò)證明△ABM∽△KFE,就可以得出,即,由AB=2AD=2BC,BK=CF就可以得出的值是為定值.(1)∵四邊形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90176。.∵AB=mAD,且n=2,∴AB=2AD.∵∠ADE+∠EDF=90176。,∠EDF+∠NDF=90176。,∴∠ADE=∠NDF.在△ADE和△NDF中,∠A=∠N,AD=ND,∠ADE=∠NDF,∴△ADE≌△NDF(ASA).∴AE=NF,DE=DF.∵FN=FC,∴AE=FC.∵AB=CD,∴ABAE=CDCF. ∴BE=DF. ∴BE=DE.Rt△AED中,由勾股定理,得,即,∴AE=AD.∴BE=2ADAD=.∴.(2)如圖3,延長(zhǎng)PM交EA延長(zhǎng)線于G,∴∠GAM=90176。.∵M(jìn)為AD的中點(diǎn),∴AM=DM.∵四邊形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90176。,AB∥CD.∴∠GAM=∠PDM.在△GAM和△PDM中,∠GAM=∠PDM,AM=DM,∠AMG=∠DMP,∴△GAM≌△PDM(ASA).∴MG=MP.在△EMP和△EMG中,PM=GM,∠PME=∠GME,ME=ME,∴△EMP≌△EMG(SAS).∴EG=EP.∴AG+AE=EP.∴PD+AE=EP,即EP=AE+DP.(3),值不變,理由如下:如圖1,連接BM交EF于點(diǎn)Q,過(guò)點(diǎn)F作FK⊥AB于點(diǎn)K,交B
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1