freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)壓軸題之平行四邊形(中考題型整理-突破提升)及答案(編輯修改稿)

2025-03-30 22:21 本頁面
 

【文章內(nèi)容簡介】 AB的中點,連接CE并延長交線段AD于點F.(1)求證:四邊形BCFD為平行四邊形;(2)若AB=6,求平行四邊形ADBC的面積.【答案】(1)見解析;(2)S平行四邊形ADBC=.【解析】【分析】(1)在Rt△ABC中,E為AB的中點,則CE=AB,BE=AB,得到∠BCE=∠EBC=60176。.由△AEF≌△BEC,得∠AFE=∠BCE=60176。.又∠D=60176。,得∠AFE=∠D=∥BD,又因為∠BAD=∠ABC=60176。,所以AD∥BC,即FD//BC,則四邊形BCFD是平行四邊形.(2)在Rt△ABC中,求出BC,AC即可解決問題;【詳解】解:(1)證明:在△ABC中,∠ACB=90176。,∠CAB=30176。,∴∠ABC=60176。,在等邊△ABD中,∠BAD=60176。,∴∠BAD=∠ABC=60176。,∵E為AB的中點,∴AE=BE,又∵∠AEF=∠BEC,∴△AEF≌△BEC,在△ABC中,∠ACB=90176。,E為AB的中點,∴CE=AB,BE=AB,∴CE=AE,∴∠EAC=∠ECA=30176。,∴∠BCE=∠EBC=60176。,又∵△AEF≌△BEC,∴∠AFE=∠BCE=60176。,又∵∠D=60176。,∴∠AFE=∠D=60176。,∴FC∥BD,又∵∠BAD=∠ABC=60176。,∴AD∥BC,即FD∥BC,∴四邊形BCFD是平行四邊形;(2)解:在Rt△ABC中,∵∠BAC=30176。,AB=6,∴BC=AF=3,AC=,∴S平行四邊形BCFD=3=,S△ACF=3=,S平行四邊形ADBC=.【點睛】本題考查平行四邊形的判定和性質(zhì)、直角三角形斜邊中線定理、等邊三角形的性質(zhì)、解直角三角形、勾股定理等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考??碱}型.9.如圖1,在△ABC中,AB=AC,AD⊥BC于D,分別延長AC至E,BC至F,且CE=EF,延長FE交AD的延長線于G.(1)求證:AE=EG;(2)如圖2,分別連接BG,BE,若BG=BF,求證:BE=EG;(3)如圖3,取GF的中點M,若AB=5,求EM的長.【答案】(1)證明見解析(2)證明見解析(3)【解析】【分析】(1)根據(jù)平行線的性質(zhì)和等腰三角形的三線合一的性質(zhì)得:∠CAD=∠G,可得AE=EG;(2)作輔助線,證明△BEF≌△GEC(SAS),可得結(jié)論;(3)如圖3,作輔助線,構(gòu)建平行線,證明四邊形DMEN是平行四邊形,得EM=DN=AC,計算可得結(jié)論.【詳解】證明:(1)如圖1,過E作EH⊥CF于H,∵AD⊥BC,∴EH∥AD,∴∠CEH=∠CAD,∠HEF=∠G,∵CE=EF,∴∠CEH=∠HEF,∴∠CAD=∠G,∴AE=EG;(2)如圖2,連接GC,∵AC=BC,AD⊥BC,∴BD=CD,∴AG是BC的垂直平分線,∴GC=GB,∴∠GBF=∠BCG,∵BG=BF,∴GC=BE,∵CE=EF,∴∠CEF=180176。﹣2∠F,∵BG=BF,∴∠GBF=180176。﹣2∠F,∴∠GBF=∠CEF,∴∠CEF=∠BCG,∵∠BCE=∠CEF+∠F,∠BCE=∠BCG+∠GCE,∴∠GCE=∠F,在△BEF和△GCE中,∴△BEF≌△GEC(SAS),∴BE=EG;(3)如圖3,連接DM,取AC的中點N,連接DN,由(1)得AE=EG,∴∠GAE=∠AGE,在Rt△ACD中,N為AC的中點,∴DN=AC=AN,∠DAN=∠ADN,∴∠ADN=∠AGE,∴DN∥GF,在Rt△GDF中,M是FG的中點,∴DM=FG=GM,∠GDM=∠AGE,∴∠GDM=∠DAN,∴DM∥AE,∴四邊形DMEN是平行四邊形,∴EM=DN=AC,∵AC=AB=5,∴EM=.【點睛】本題是三角形的綜合題,主要考查了全等三角形的判定與性質(zhì),直角三角形斜邊中線的性質(zhì),等腰三角形的性質(zhì)和判定,平行四邊形的性質(zhì)和判定等知識,解題的關(guān)鍵是作輔助線,并熟練掌握全等三角形的判定方法,特別是第三問,輔助線的作法是關(guān)鍵.10.猜想與證明:如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若M為AF的中點,連接DM、ME,試猜想DM與ME的關(guān)系,并證明你的結(jié)論.拓展與延伸:(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為   .(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結(jié)論仍然成立.【答案】猜想:DM=ME,證明見解析;(2)成立,證明見解析.【解析】試題分析:延長EM交AD于點H,根據(jù)ABCD和CEFG為矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根據(jù)Rt△HDE得到HM=DE,則可以得到答案;(1)、延長EM交AD于點H,根據(jù)ABCD和CEFG為矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根據(jù)Rt△HDE得到HM=DE,則可以得到答案;(2)、連接AE,根據(jù)正方形的性質(zhì)得出∠FCE=45176。,∠FCA=45176。,根據(jù)RT△ADF中AM=MF得出DM=AM=MF,根據(jù)RT△AEF中AM=MF得出AM=MF=ME,從而說明DM=ME.試題解析:如圖1,延長EM交AD于點H,∵四邊形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,F(xiàn)M=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如圖1,延長EM交AD于點H,∵四邊形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,F(xiàn)M=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴H
點擊復(fù)制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1