freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)二模試題分類匯編——平行四邊形綜合及答案解析(編輯修改稿)

2025-03-30 22:20 本頁面
 

【文章內(nèi)容簡介】 FG,由翻折不變性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=, ∵CD=AB=4,∠C=90176。,∴在Rt△CDF中,由勾股定理得:CF=,∴BF=BCCF=9,由翻折不變性可知,F(xiàn)B=FB′=,∴B′D=DFFB′=.【點睛】四邊形綜合題,考查了矩形的性質(zhì)、翻折變換的性質(zhì)、勾股定理、等腰三角形的判定、平行線的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會利用翻折不變性解決問題.8.(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應(yīng)用)如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結(jié)果)【答案】見解析【解析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;應(yīng)用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.∵∠A=∠F,∴∠BCD=∠ECG.∴∠BCD∠ECD=∠ECG∠ECD,即∠BCE=∠DCG.在△BCE和△DCG中, ∴△BCE≌△DCG(SAS),∴BE=DG.應(yīng)用:∵四邊形ABCD為菱形,∴AD∥BC,∵BE=DG,∴S△ABE+S△CDE=S△BEC=S△CDG=8,∵AE=3ED,∴S△CDE= ,∴S△ECG=S△CDE+S△CDG=10∴S菱形CEFG=2S△ECG=20.9.如圖1,在正方形ABCD中,AD=6,點P是對角線BD上任意一點,連接PA,PC過點P作PE⊥PC交直線AB于E.(1) 求證:PC=PE。(2) 延長AP交直線CD于點F.①如圖2,若點F是CD的中點,求△APE的面積;②若ΔAPE的面積是,則DF的長為 (3) 如圖3,點E在邊AB上,連接EC交BD于點M,作點E關(guān)于BD的對稱點Q,連接PQ,MQ,過點P作PN∥CD交EC于點N,連接QN,若PQ=5,MN=,則△MNQ的面積是 【答案】(1)略;(2)①8,②4或9;(3)【解析】【分析】(1)利用正方形每個角都是90176。,對角線平分對角的性質(zhì),三角形外角等于和它不相鄰的兩個內(nèi)角的和,等角對等邊等性質(zhì)容易得證。(2)作出△ADP和△DFP的高,△PAE的底和高,通過面積法列出方程求解即可。(3)根據(jù)已經(jīng)條件證出△MNQ是直角三角形,計算直角邊乘積的一半可得其面積.【詳解】(1) 證明:∵點P在對角線BD上,∴△ADP≌△CDP,∴AP=CP, ∠DAP =∠DCP,∵PE⊥PC,∴∠EPC=∠EPB+∠BPC=90176。,∵∠PEA=∠EBP+∠EPB=45176。+90176?!螧PC=135176?!螧PC,∵∠PAE=90176。∠DAP=90176。∠DCP,∠DCP=∠BPC∠PDC=∠BPC45176。,∴∠PAE=90176。(∠BPC45176。)= 135176?!螧PC,∴∠PEA=∠PAE,∴PC=PE。(2)①如圖2,過點P分別作PH⊥AD,PG⊥CD,垂足分別為H、.∵四邊形ABCD是正方形,P在對角線上,∴四邊形HPGD是正方形,∴PH=PG,PM⊥AB,設(shè)PH=PG=a,∵F是CD中點,AD=6,則FD=3,=9,∵==,∴,解得a=2,∴AM=HP=2,MP=MGPG=62=4,又∵PA=PE, ∴AM=EM,AE=4,∵=,②設(shè)HP=b,由①可得AE=2b,MP=6b,∴=,解得b=,∵==,∴,∴當(dāng)b=,DF=4;當(dāng)b=,DF=9,即DF的長為4或9。(3)如圖,∵E、Q關(guān)于BP對稱,PN∥CD,∴∠1=∠2,∠2+∠3=∠BDC=45176。,∴∠1+∠4=45176。,∴∠3=∠4,易證△PEM≌△PQM, △PNQ≌△PNC,∴∠5=∠6, ∠7=∠8 ,EM=QM,NQ=NC,∴∠6+∠7=90176。,∴△MNQ是直角三角形,設(shè)EM=a,NC=b列方程組,可得ab=,∴,【點睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、等腰直角三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)等知識;本題綜合性強,有一定難度,熟練掌握正方形的性質(zhì),.10.定義:我們把三角形被一邊中線分成的兩個三角形叫做“友好三角形”.性質(zhì):如果兩個三角形是“友好三角形”,那么這兩個三角形的面積相等.理解:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.應(yīng)用:如圖②,在矩形ABCD中,AB=4,BC=6,點E在AD上,點F在BC上,AE=BF,AF與BE交于點O.(1)求證:△AOB和△AOE是“友好三角形”;(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積.探究:在△ABC中,∠A=30176。,AB=4,點D在線段AB上,連接CD,△ACD和△BCD是“友好三角形”,將△ACD沿CD所在直線翻折,得到△A′CD,若△A′CD與△ABC重合部分的面積等于△ABC面積的,請直接寫出△ABC的面積.【答案】(1)見解析;(2)12;探究:2或2.【解析】試題分析:(1)利用一組對邊平行且相等的四邊形是平行四邊形,得到四邊形ABFE是平行四邊形,然后根據(jù)平行四邊形的性質(zhì)證得OE=OB,即可證得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中點,則可以求得△ABE、△ABF的面積,根據(jù)S四邊形CDOF=S矩形ABCD2S△ABF即可求解.探究:畫出符合條件的兩種情況:①求出四邊形A′DCB是平行四邊形,求出BC和A′D推出∠ACB=90176。,根據(jù)三角形面積公式求出即可;②求出高CQ,求出△A′DC的面積.即可求出△ABC的面積.試題解析:(1)∵四邊形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四邊形ABFE是平行四邊形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB與△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四邊形CDOF=S矩形ABCD2S△ABF=46243=12.探究:解:分為兩種情況:①如圖1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折疊A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD與△ABC重合部分的面積等于△ABC面積的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四邊形A′DCB是平行四邊形,∴BC=A′D=2,過B作BM⊥AC于M,∵AB=4,∠BAC=30176。,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90176。,由勾股定理得:AC=,∴△ABC的面積是BCAC=22=2;②如圖2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折疊A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD與△ABC重合部分的面積等于△ABC面積的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四邊形A′BDC是平行四
點擊復(fù)制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1