freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

北師大版選修2-2高中數(shù)學(xué)312函數(shù)的極值同步訓(xùn)練(更新版)

2025-01-24 00:14上一頁面

下一頁面
  

【正文】 f(x)在 x= 2 處取得極大值. 答案 6 11.設(shè)函數(shù) y=- x5+ 253 x3- 20x,當(dāng) x∈ (- ∞ ,- 1)∪ (1,+ ∞ )時(shí)的極大值 為 p,極小值為 q,試比較 p 與 q 的大?。? 解 y′ =- 5x4+ 25x2- 20=- 5(x- 1)(x+ 1)(x- 2)(x+ 2). 當(dāng) x 變化時(shí), y′ 、 y 的變化情況如下表: x (- ∞ ,- 2) - 2 (- 2,- 1) (1,2) 2 (2,+ ∞ ) y′ - 0 + + 0 - y 極小值 163 極大值- 163 由表可知 p< q. 12. (創(chuàng)新拓展 )已知函數(shù) f(x)= x2+ ax(x≠ 0,常數(shù) a∈ R).若函數(shù) f(x)在 x∈ [2,+ ∞ )上是單調(diào)遞增的,求 a 的取值范圍. 解 f′ (x)= 2x- ax2= 2x3- ax2 . 要使 f(x)在 [2,+ ∞ )上是單調(diào)遞增的, 則 f′ (x)≥ 0 在 x∈ [2,+ ∞ )時(shí)恒成立, 即 2x3- ax2 ≥ 0 在 x∈ [2,+ ∞ )時(shí)恒成立. ∵ x20, ∴ 2x3- a≥ 0,即 a≤ 2x3在 x∈ [2,+ ∞ )上恒成立. ∴ a≤ (2x3)min. ∵ x∈ [2,+ ∞ ), y= 2x3是單調(diào)遞增的, ∴ (2x3)min= 16, ∴ a≤ 16. 當(dāng) a= 16 時(shí) f′ (x)= 2x3- 16x2 ≥ 0(x∈ [2,+ ∞ ))有且只有 f′ (2)= 0, ∴ a 的取值范圍 是 {a|a≤ 16}. 。
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1