【摘要】不等式的性質(zhì)不等式不等式的證明不等式的解法應(yīng)用不等式的性質(zhì)互逆性—ab傳遞性—ab,bc可加性—ab推論移項(xiàng)法則—a+cb同向可加—ab,cd可乘性—ab,推論同向正
2025-07-22 01:43
【摘要】第三章不等式§不等關(guān)系與不等式自主學(xué)習(xí)知識(shí)梳理1.比較實(shí)數(shù)a,b的大小(1)文字?jǐn)⑹鋈绻鸻-b是正數(shù),那么a________b;如果a-b為______,那么a=b;如果a-b是負(fù)數(shù),那么a______b,反之也成立.(2)符號(hào)表示a-b0?
2025-11-10 23:20
【摘要】第一篇:高中數(shù)學(xué)必修五不等關(guān)系與不等式教案 第三章不等式 必修5不等關(guān)系與不等式 一、教學(xué)目標(biāo) ,讓學(xué)生感受到現(xiàn)實(shí)生活中存在著大量的不等關(guān)系; (組)產(chǎn)生的實(shí)際背景的前提下,學(xué)習(xí)不等式的相關(guān)...
2025-10-19 17:51
【摘要】一元二次不等式的解法課時(shí)目標(biāo).、一元二次方程之間的相互關(guān)系.1.一元一次不等式一元一次不等式經(jīng)過(guò)變形,可以化成axb(a≠0)的形式.(1)若a0,解集為________________;(2)若a0,解集為________________.2.一元二次不等式一
2025-11-26 06:39
【摘要】一元二次不等式的應(yīng)用課時(shí)目標(biāo)(組)的簡(jiǎn)單分式不等式.不等式有關(guān)的恒成立問(wèn)題.1.一元二次不等式的解集:判別式Δ=b2-4acΔ0x10(a0)ax2+bx+c0
2025-11-26 06:34
【摘要】?1.1不等關(guān)系?1.2比較大小?一、不等關(guān)系?在數(shù)學(xué)意義上,不等關(guān)系可以體現(xiàn):?①________之間的不等關(guān)系;?②________之間的不等關(guān)系;?③________之間的不等關(guān)系;?④________之間的不等關(guān)系.?二、比較大小?1.任意兩個(gè)實(shí)數(shù)
2025-11-09 00:48
【摘要】12不等式的定義:用不等號(hào)連接兩個(gè)解析式所得的式子,叫做不等式.說(shuō)明:(1)不等號(hào)的種類:>、<、≥(≮)、≤(≯)、≠.(2)解析式是指:代數(shù)式和超越式(包括指數(shù)式、對(duì)數(shù)式和三角式等)(3)不等式研究的范圍是實(shí)數(shù)集R.3對(duì)于任意兩個(gè)實(shí)數(shù)a、b,在a>b,a=b,a
2025-11-09 12:09
【摘要】§一元二次不等式的解法(1)教學(xué)目標(biāo)(一)教學(xué)知識(shí)點(diǎn)1.一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系.2.一元二次不等式的解法.(二)能力訓(xùn)練要求1.通過(guò)由圖象找解集的方法提高學(xué)生邏輯思維能力,滲透數(shù)形結(jié)合思想.2.提高運(yùn)算(變形)能力.(三)德育滲透目標(biāo)滲透由具體到抽象思想.教學(xué)重點(diǎn)
2025-11-09 23:35
【摘要】1.(2020·江西卷)不等式|x-2x|x-2x的解集是()A.(0,2)B.(-∞,0)C.(2,+∞)D.(-∞,0)∪(0,+∞)解析:依題意知,x-2x0,∴0x2,故選A.答案:A2.(202
2025-11-06 03:18
【摘要】第三章測(cè)試(時(shí)間:120分鐘滿分:150分)一、選擇題(5×10=50分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.已知集合M={x|x23
2025-11-26 01:55
【摘要】 大家網(wǎng) 11/12高中數(shù)學(xué)不等式解題漫談一、活用倒數(shù)法則巧作不等變換——不等式的性質(zhì)和應(yīng)用不等式的性質(zhì)和運(yùn)算法則有許多,如對(duì)稱性,傳遞性,,尤其是不等變換有很大的優(yōu)越性.倒數(shù)法則:若ab0,則ab與1.分析:當(dāng)a1時(shí),原
2025-06-07 23:55
【摘要】第3課時(shí)正弦定理、余弦定理的綜合應(yīng)用、余弦定理的內(nèi)容.,選擇恰當(dāng)?shù)墓浇馊切?,進(jìn)一步理解正弦定理、余弦定理的作用.2021年,敘利亞內(nèi)戰(zhàn)期間,為了準(zhǔn)確分析戰(zhàn)場(chǎng)形式,美軍派出偵查分隊(duì)由分別位于敘利亞的兩處地點(diǎn)C和D進(jìn)行觀測(cè),測(cè)得敘利亞的兩支精銳部隊(duì)分別位于A和B處,美軍測(cè)得的數(shù)據(jù)包
2024-12-08 02:37