【摘要】二次函數(shù)y=ax2+bx+c的圖象和性質(zhì)(3)一般地,拋物線y=a(x-h)2+k與y=ax2的相同,不同y=ax2y=a(x-h)2+k形狀位置y=ax2y=ax2+ky=a(x–h)2y=a(x–h)2+k上下平移左右平移上
2024-10-16 05:25
【摘要】◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階
2025-06-13 12:12
【摘要】二次函數(shù)的圖象和性質(zhì)第二章二次函數(shù)導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)第3課時(shí)二次函數(shù)y=a(x-h)2的圖象與性質(zhì)情境引入學(xué)習(xí)目標(biāo)y=a(x-h)2的圖象.(難點(diǎn))y=a(x-h)2的性質(zhì).(重點(diǎn))y=ax2與y=a(x-h)2的聯(lián)系.導(dǎo)入新課復(fù)習(xí)引入a,
2025-06-18 01:23
【摘要】第1章二次函數(shù)1.2二次函數(shù)的圖像第3課時(shí)二次函數(shù)y=ax2+bx+c(a≠0)的圖象及特征筑方法勤反思第1章二次函數(shù)學(xué)知識(shí)學(xué)知識(shí)二次函數(shù)的圖像知識(shí)點(diǎn)一用配方法將二次函數(shù)y=ax2+bx+c變成y=a(x-m)2+k的形式二次函數(shù)y=ax2+b
2025-06-16 08:10
2025-06-12 08:21
【摘要】◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆典例導(dǎo)學(xué)◆反饋演練(◎第一階
【摘要】北師大版九年級(jí)下冊(cè)數(shù)學(xué)、對(duì)稱軸和頂點(diǎn)坐標(biāo).(1)y=2(x-3)2-5(2)y=-(x+1)2(3)y=3(x+4)2+2移得到的?情境導(dǎo)入1.(1)開口:向上,對(duì)稱軸:直線x=3,頂點(diǎn)坐標(biāo)(3,-5)(2)開口:向下,對(duì)稱軸:直線x=-1,頂點(diǎn)坐標(biāo)(-1,0)(3)開口:向上,對(duì)稱軸:
2025-06-17 23:45
【摘要】北師大版九年級(jí)下冊(cè)數(shù)學(xué)的圖象的頂點(diǎn)坐標(biāo)是;開口方向是;最值是.y=-2x2+3的圖象可由函數(shù)的圖象向平移個(gè)單位得到.y=-3x2的圖象向下平移2個(gè)單位可得
2025-06-17 23:51
【摘要】北師大版九年級(jí)下冊(cè)數(shù)學(xué)一般地,形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù).(1)列表.(3)連線.(2)描點(diǎn).?情境導(dǎo)入本節(jié)目標(biāo)y=x2的圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗(yàn).y=x2的圖象,并能根據(jù)圖象認(rèn)識(shí)和理解二次函數(shù)
2025-06-17 23:49
【摘要】北師大版九年級(jí)下冊(cè)數(shù)學(xué)函數(shù)y=x2y=-x2函數(shù)y=x2和y=-x2的圖象x24-2y=x2y=-x2圖象形狀開口方向?qū)ΨQ軸頂點(diǎn)坐標(biāo)拋物線拋物線向上向下y軸y軸(O,0)
2025-06-17 23:42
【摘要】二次函數(shù)一、選擇題1.下列函數(shù)中屬于一次函數(shù)的是(),屬于反比例函數(shù)的是(),屬于二次函數(shù)的是()A.y=x(x+1)B.xy=1C.y=2x2-2(x+1)2D.132??xy2.在二次函數(shù)①y=3x2;②2234;32xyxy??③中,圖象在同一水平線上的開口大小順
2024-11-28 19:22