【摘要】平面幾何練習(xí)題一.選擇題:1.如果兩個(gè)角的一邊在同一條直線上,另一邊互相平行,那么這兩個(gè)角()A.相等 B.互補(bǔ) C.相等或互補(bǔ) D.相等且互補(bǔ)2.如圖,,,則()A. B. C. D.3.如圖,,則()A. B. C. D.4.如圖,能與構(gòu)成同旁內(nèi)角的角
2025-04-04 02:56
【摘要】第一講注意添加平行線證題在同一平面內(nèi),,,若能依據(jù)證題的需要,添加恰當(dāng)?shù)钠叫芯€,則能使證明順暢、簡潔.添加平行線證題,一般有如下四種情況.1為了改變角的位置大家知道,兩條平行直線被第三條直線所截,同位角相等
2025-03-25 01:21
【摘要】一、向量有關(guān)知識(shí)復(fù)習(xí)(1)向量共線的充要條件:ab與共線??0,????bRba??(2)向量垂直的充要條件:??0,00??????bababa(3)兩向量相等充要條件:,baba???且方向相同。11221221(,)(,)//0axybx
2024-11-11 21:11
【摘要】由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平面幾何的許多性質(zhì),如平移、全等、相似、長度、夾角都可以由向量的線性運(yùn)算及數(shù)量積表示出來,因此,利用向量方法可以解決平面幾何中的一些問題。平面幾何中的向量方法例1、證明平行四邊形四邊平方和等于兩對(duì)角線平方和ABDC已知:平行四邊形ABCD。求證:
2025-08-01 17:29
【摘要】《初高中數(shù)學(xué)銜接教程》13410023460《初高中數(shù)學(xué)銜接教程》13410023460《初高中數(shù)學(xué)銜接教程》13410023460《初高中數(shù)學(xué)銜接教程》13410023460《初高中數(shù)學(xué)銜接教程》13410023460《初高中數(shù)學(xué)銜接教程》13410023460《初高中數(shù)學(xué)
2025-01-09 23:31
2025-06-24 20:10
【摘要】2020年全國中考數(shù)學(xué)試題分類解析匯編(159套63專題)專題35:平面幾何基礎(chǔ)一、選擇題1.(2020北京市4分)如圖,直線AB,CD交于點(diǎn)O,射線OM平分∠AOD,若∠BOD=760,則∠BOM等于【】A.38?B.104?C.142?D.144?
2025-08-02 10:22
【摘要】4、平行四邊形ABCD中,設(shè)E、F分別是BC、AB上的一點(diǎn),AE與CF相交于P,且AE=CF.求證:∠DPA=∠DPC.(初二)FPDECBA如圖,四邊形ABCD為正方形,DE∥AC,且CE=CA,直線EC交DA延長線于F.EDACBF求證:AE=AF.(初二)APCB
2025-01-14 02:13
【摘要】§平面幾何的向量方法【學(xué)習(xí)目標(biāo)、細(xì)解考綱】體會(huì)向量在解決問題中的應(yīng)用,培養(yǎng)運(yùn)算及解決問題的能力?!拘≡嚿硎?、輕松過關(guān)】1、ABCD的三個(gè)頂點(diǎn)筆標(biāo)分別為A(-2,1),B(-1,3),C()則頂點(diǎn)D的坐標(biāo)為()。A.(2,1)B.(2,2)C.(1,2
2024-11-30 03:59
【摘要】平面向量應(yīng)用舉例平面幾何中的向量方法問題提出t57301p2???????,使得向量可以進(jìn)行線性運(yùn)算和數(shù)量積運(yùn)算,并具有鮮明的幾何背景,從而溝通了平面向量與平面幾何的內(nèi)在聯(lián)系,在某種條件下,平面向量與平面幾何可以相互轉(zhuǎn)化.、垂直、夾角、距離、全等、相似等,是平面幾何中常見的問題,而這些問題都可以由
2024-11-17 12:03
【摘要】第一篇:全國初中數(shù)學(xué)競(jìng)賽輔導(dǎo)(初3)第19講平面幾何中的幾個(gè)著名定理 第十九講*平面幾何中的幾個(gè)著名定理 幾何學(xué)起源于土地測(cè)量,幾千年來,人們對(duì)幾何學(xué)進(jìn)行了深入的研究,現(xiàn)已發(fā)展成為一門具有嚴(yán)密的邏...
2024-11-04 00:56
【摘要】平面向量應(yīng)用舉例平面幾何中的向量方法問題提出,使得向量可以進(jìn)行線性運(yùn)算和數(shù)量積運(yùn)算,并具有鮮明的幾何背景,從而溝通了平面向量與平面幾何的內(nèi)在聯(lián)系,在某種條件下,平面向量與平面幾何可以相互轉(zhuǎn)化.、垂直、夾角、距離、全等、相似等,是平面幾何中常見的問題,而這些問題都可以由向量的線性運(yùn)算及數(shù)量積表示出
2024-11-18 12:17