【摘要】分類突破題型一、利用向量證明平行與垂直例1如圖所示,已知直三棱柱ABC—A1B1C1中,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分別為B1A、
2025-08-05 10:54
【摘要】(1)沈陽二中一.教學(xué)目標(biāo)一.教學(xué)目標(biāo):初步掌握一次和二次函數(shù)模型的應(yīng)用,會解決較簡單的實(shí)際應(yīng)用問題.:嘗試運(yùn)用一次和二次函數(shù)模型解決實(shí)際問題,提高學(xué)生的數(shù)學(xué)建模能力.:了解數(shù)學(xué)知識來源于生活,又服務(wù)于實(shí)際,從而培養(yǎng)學(xué)生的應(yīng)用意識,提高學(xué)習(xí)數(shù)學(xué)的興趣.二.
2025-11-02 06:00
【摘要】孫廣仁例1.1999年11月1日起,全國儲蓄存款征收利息稅,利息稅的稅率為20%,即儲蓄利息的20%由各銀行儲蓄點(diǎn)代扣代繳,某人在2020年11月27日存入人民幣1萬元,存期1年,年利率為%,則到期可凈得本金和利息多少元。到期利息y1=10000×%利息稅y2=y1×20%凈得利息y1-y2
2025-10-31 04:47
【摘要】空間向量在立體幾何中的應(yīng)用【例1】已知三棱錐P-ABC中,PA⊥面ABC,AB⊥AC,PA=AC=AB,N為AB上一點(diǎn),AB=4AN,M,S分別為PB,BC的中點(diǎn).(Ⅰ)證明:CM⊥SN;(Ⅱ)求SN與平面CMN所成角的大小.證明:設(shè)PA=1,以A為原點(diǎn),射線AB,AC,AP分別為x,y,z軸正向建立空間直角坐標(biāo)系如圖.則P(0,0,1),C(0,1,0),B
2025-08-18 16:48
【摘要】1空間向量的坐標(biāo)表示2提問:我們知道,在平面直角坐標(biāo)系中,平面上任意一點(diǎn)的位置都有唯一的坐標(biāo)來表示.那空間中任意一點(diǎn)的位置怎樣用坐標(biāo)來表示?3墻墻地面下圖是一個房間的示意圖,我們來探討表示電燈位置的方法.z13
2025-10-31 09:21
【摘要】第一篇:幾何畫板在小學(xué)數(shù)學(xué)平面圖形中的應(yīng)用 幾何畫板在小學(xué)數(shù)學(xué)平面圖形中的應(yīng)用 王計山南和縣新區(qū)小學(xué) 摘要:在本文中我們通過幾個實(shí)例說明幾何畫板課件在小學(xué)數(shù)學(xué)平面圖形教學(xué)中的廣泛應(yīng)用,并指出幾何...
2025-10-31 17:03
【摘要】從平面幾何的發(fā)展看現(xiàn)代數(shù)學(xué)談勝利二零零四年十二月一日歐幾里得幾何(~公元前300)總結(jié)了公元前7世紀(jì)至4世紀(jì)希臘的幾何成果。研究對象:直線和圓解析幾何(17世紀(jì)初)笛卡兒和費(fèi)爾馬引進(jìn)了坐標(biāo)后幾何問題代數(shù)問題
2025-07-18 08:19
【摘要】復(fù)習(xí):向量數(shù)量積的定義是什么?如何求向量夾角?向量的運(yùn)算律有哪些?平面向量的數(shù)量積有那些性質(zhì)?答:babababa????????cos,cos運(yùn)算律有:)()().(2bababa????????abba???.1cbcacba?????
2025-11-01 08:36
【摘要】復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?平面向量的基本定理:向量的基底:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實(shí)數(shù)λ1,
2025-11-02 21:10
【摘要】第14講│導(dǎo)數(shù)的應(yīng)用第14講導(dǎo)數(shù)的應(yīng)用知識梳理第14講│知識梳理1.函數(shù)的單調(diào)性若函數(shù)f(x)在某區(qū)間內(nèi)可導(dǎo),則f′(x)0?f(x)在該區(qū)間上_________;f′(x)0?f(x)在該區(qū)間上____________.反之,若f(x)在某區(qū)間上單調(diào)遞增,則在
2025-11-03 01:35
2025-11-01 01:04
【摘要】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
2025-11-02 09:01