【摘要】三角函數(shù)的最值問題新沂市第一中學高三數(shù)學組授課人:安勇重點:讓學生能運用三角函數(shù)概念、圖象、性質(zhì)、同角三角函數(shù)的基本關系式、和差角公式等求有關最值問題;掌握求最值常見思想方法。難點:利用三角函數(shù)的性質(zhì)求有關最值。下頁=sinx,y=cosx的值域是————。=asinx+
2024-11-12 16:46
【摘要】二次函數(shù)的最值問題重點掌握閉區(qū)間上的二函數(shù)的最值問題難點了解并會處理含參數(shù)的二次函數(shù)的最值問題核心區(qū)間與對稱軸的相對位置思想數(shù)形結合分類討論復習引入頂點式:y=a(x-m)2+n(a0)兩根式:y=a(x-x1)(x-x2)(a0)
2024-11-11 21:11
【摘要】圓錐曲線中的最值問題復習1、橢圓及雙曲線第一定義;2、橢圓及雙曲線第二定義;3、拋物線定義例1、已知橢圓171622??yx及點M(1,3),F1、F2分別為橢圓的左、右焦點,A為橢圓上的任意一點,求:①∣AM│+∣AF2│
2025-08-16 00:56
【摘要】絕對值定值、最值探討例題精講板塊一:絕對值幾何意義當時,,此時是的零點值.零點分段討論的一般步驟:找零點、分區(qū)間、定符號、去絕對值符號.即先令各絕對值式子為零,求得若干個絕對值為零的點,在數(shù)軸上把這些點標出來,這些點把數(shù)軸分成若干部分,再在各部分內(nèi)化簡求值.的幾何意義:在數(shù)軸上,表示這個數(shù)的點離開原點的距離.的幾
2025-06-24 01:50
【摘要】正方形里面的最值問題 一.選擇題(共3小題)1.(2012春?郾城區(qū)校級期中)如圖,若正方形ABCD的邊長為4,BE=1,在AC上找一點P,使PE+PB的值最小,最小值是( ?。〢.3 B.4 C.5 D.6 2.設點P是正方形ABCD內(nèi)任意一點,則PA+PB+PC+PD的最小值是( ?。〢.邊長的兩倍 B.周長C.兩條對角線長之和 D.以上都不對 3
2025-03-25 05:00
【摘要】解析幾何中的最值問題華東師范大學松江實驗高級中學王麗萍復習?||),,(),,(12211AByxByxA則點、點與點的距離:已知221221)()(yyxx???2211||bacbyax???????dlAbacbyaxlyxA的距離線點與直,則不能同時為、直線知
2025-07-21 17:20
【摘要】馬到成功奧數(shù)專題:離散最值引言:在國內(nèi)外數(shù)學競賽中,常出現(xiàn)一些在自然數(shù)范圍內(nèi)變化的量的最值問題,我們稱之為離散最值問題。解決這類非常規(guī)問題,尚無統(tǒng)一的方法,對不同的題目要用不同的策略和方法,就具體的題目而言,大致可從以下幾個方面著手: ??; ——確定最值; ——確定最值;。離散最值問題滲透到小升初的各個奧數(shù)專題中,學好它可為解決數(shù)論,計數(shù),應用問題等打下扎實的基礎。
2025-03-25 03:44
【摘要】2020屆高考數(shù)學復習強化雙基系列課件13《函數(shù)的最值》知識網(wǎng)絡最值求解方法最值問題常用解法最值綜合問題最值應用問題“恒成立”問題“存在”問題:配方法,判別式法,代換法,不等式法,單調(diào)性法,數(shù)形結合法,三角函數(shù)有界法,反函數(shù)法。復習導引,
2024-11-11 02:54
【摘要】一、復習與引入f(x)在x0處連續(xù)時,判別f(x0)是極大(小)值的方法是:①如果在x0附近的左側(cè)右側(cè),那么,f(x0)是極大值;②如果在x0附近的左側(cè)右側(cè),那么,f(x0)是極小值.
2024-11-12 19:05
【摘要】 輪換對稱式的最值問題學生姓名授課日期教師姓名授課時長知識定位在不等式和求最值的問題中,輪換對稱式是十分常見的。自招、競賽中出現(xiàn)的不等式證明或代數(shù)式求最值問題以輪換對稱式為主,而這一類有關輪換對稱式的問題也以其簡潔優(yōu)美的數(shù)學形式和較為靈活多變的解決方法成為自招競賽中的一大難點。本章節(jié)列舉了處理幾類輪換對稱式問題和幾種常見處理方法,希望同
2025-04-17 12:43
【摘要】......軸對稱中幾何動點最值問題總結 軸對稱的作用是“搬點移線”,可以把圖形中比較分散、缺乏聯(lián)系的元素集中到“新的圖形”中,為應用某些基本定理提供方便。比如我們可以利用軸對稱性質(zhì)求幾何圖形中一些線段和的最大值或最小值問題。利用軸對稱的
2025-03-26 04:24
【摘要】1幾何中的最值問題(隨堂測試)1.在△ABC中,∠BAC=120°,AB=AC=4,M、N兩點分別是邊AB、AC上的動點,將△AMN沿MN翻折,A點的對應點為A′,連接BA′,則BA′的最小值是_________.A'NMCBAOABCDMN
2025-08-01 20:48