【摘要】《等差數(shù)列前n項和的公式》說課稿教學目標:A、知識目標:掌握等差數(shù)列前n項和公式的推導方法;掌握公式的運用。B、能力目標:(1)通過公式的探索、發(fā)現(xiàn),在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。(2)利用以退求進的思維策略,遵循從特殊到一般的認知規(guī)律,讓學生在實踐中通過觀察、嘗試、分析、類比的方
2025-08-26 11:26
【摘要】密級公開學號202040404035衡水學院畢業(yè)論文矩陣在求遞推數(shù)列通項中的應用論文作者:韓立華指導教師:姜文英系別::數(shù)學與計算機科學系
2025-09-28 03:46
【摘要】等差數(shù)列前n項和公式復習回顧(1)等差數(shù)列的通項公式:已知首項a1和公差d,則有:an=a1+(n-1)d已知第m項am和公差d,則有:an=am+(n-m)d,d=(an-am)/(n-m)
2025-08-15 20:34
【摘要】等差數(shù)列的前n項和公式一新課引入一個堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支.這個V形架上共放著多少支鉛筆?播放課件一個堆放小球的V形架問題就是“”?1004321???????這是小學時就知道的一個故事,
2025-09-30 17:22
【摘要】課題:等比數(shù)列的通項公式班級:姓名:學號:第學習小組【學習目標】1.理解等比數(shù)列的概念;體會等比數(shù)列是用來刻畫一類離散現(xiàn)象的重要數(shù)學模型?!菊n前預習】1.下列哪些數(shù)列是等差數(shù)列,哪些數(shù)列是等比數(shù)列?(1)12lg6lg3lg??????,,;
2024-11-20 01:05
【摘要】數(shù)列求和方法等差數(shù)列、等比數(shù)列的求和是高考??嫉膬?nèi)容之一,一般數(shù)列求和的基本思想是將其通項變形,化歸為等差數(shù)列或等比數(shù)列的求和問題,或利用代數(shù)式的對稱性,采用消元等方法來求和.下面我們結合具體實例來研究求和的方法.一、直接求和法(或公式法)將數(shù)列轉(zhuǎn)化為等差或等比數(shù)列,直接運用等差或等比數(shù)列的前n項和公式求得.例1求.解:原式. 由等差數(shù)列求和公式,得原式.二、
2025-07-23 16:03
【摘要】復習回顧通項公式:等差數(shù)列中:前n項和公式:例題講解例1.求集合中元素的個數(shù),并求這些元素的和。解:代公式可得或由,即或答:集合M中共有14個元素,它們的和等于7
2024-11-09 05:34
【摘要】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第5課時數(shù)列的通項與求和要點·疑點·考點求數(shù)列的前n項和Sn,重點應掌握以下幾種方法::如果一個數(shù)列{an},與
2024-11-10 07:56
【摘要】2020屆高考數(shù)學二輪復習系列課件18《數(shù)列數(shù)列通項與數(shù)列中的不等式》一、基礎知識.n有有關的命題:第一步:驗證初始狀態(tài),即“n=n0時命題成立”;第二步:假設推理,即“假設n=k(k≥n0)時命題成立,由此出發(fā),推得n=k+1時命題也成立”.:21,0???aaa:注
2024-11-11 02:53
【摘要】主講老師:數(shù)列復習——通項公式基本概念如果數(shù)列{an}的第n項an與n之間的關系可以用一個公式來表示,這個公式就叫做這個數(shù)列的通項公式.數(shù)列的通項公式:數(shù)列的通項公式的求法例1.根據(jù)數(shù)列的前幾項,寫出下列數(shù)列的一個通項公式:;,72,114,
2024-11-09 01:17
【摘要】高一數(shù)學備課組數(shù)列通項一、常用數(shù)列通項1,2,3,4,……1,1,3,5,7,9,……3,5,7,9,11,……2,4,6,8,10,……0,2,4,6,8,……2,4,8,16,32,……1,4,9,16,25,
2024-11-10 01:03
【摘要】精品資源特征方程法求解遞推關系中的數(shù)列通項考慮一個簡單的線性遞推問題.a1=ban+1=can+d設已知數(shù)列的項滿足其中求這個數(shù)列的通項公式.采用數(shù)學歸納法可以求解這一問題,然而這樣做太過繁瑣,而且在猜想通項公式中容易出錯,本文提出一種易于被學生掌握的解法——特征方程法:針對問題中的遞推關系式作出一個方程稱之為特征方程;.
2025-06-21 15:18