【摘要】1復(fù)數(shù)的乘法與除法2一、復(fù)數(shù)的乘法法則:(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(bc+ad)i顯然任意兩個復(fù)數(shù)的積仍是一個復(fù)數(shù).對于任意z1,z2,z3∈C,有z1?z2=z2?z1,z1?z2?z3=z1?(z2?z3),z
2024-11-18 01:21
【摘要】復(fù)數(shù)的四則運算我們引入這樣一個數(shù)i,把i叫做虛數(shù)單位,并且規(guī)定:i2??1;形如a+bi(a,b∈R)的數(shù)叫做復(fù)數(shù).全體復(fù)數(shù)所形成的集合叫做復(fù)數(shù)集,一般用字母C表示.復(fù)習(xí):實部復(fù)數(shù)的代數(shù)形式:通常用字母z表示,即biaz??),(RbRa??虛部其中
2025-07-18 19:36
【摘要】03數(shù)系的擴充與復(fù)數(shù)的引入,§3.2復(fù)數(shù)代數(shù)形式的四則運算,第二課時復(fù)數(shù)代數(shù)形式的乘除運算,第一頁,編輯于星期六:點三十八分。,目標導(dǎo)向,第二頁,編輯于星期六:點三十八分。,第三頁,編輯于星期六:點三...
2024-10-22 19:04
【摘要】導(dǎo)數(shù)的計算(2)復(fù)習(xí)導(dǎo)函數(shù)的定義00()()()limlimxxyfxxfxfxyxx???????????????今后我們可以直接使用的基本初等函數(shù)的導(dǎo)數(shù)公式表11.(),'()0;2.(),'();3.()s
2024-11-18 12:13
【摘要】導(dǎo)數(shù)的計算(3)復(fù)習(xí)導(dǎo)函數(shù)的定義00()()()limlimxxyfxxfxfxyxx???????????????今后我們可以直接使用的基本初等函數(shù)的導(dǎo)數(shù)公式表11.(),'()0;2.(),'();3.()s
【摘要】§學(xué)習(xí)目標1.理解曲邊梯形面積的求解思想,掌握其方法步驟;2.了解定積分的定義、性質(zhì)及函數(shù)在上可積的充分條件;3.明確定積分的幾何意義和物理意義;4.無限細分和無窮累積的思維方法.預(yù)習(xí)與反饋(預(yù)習(xí)教材P42~P47,找出疑惑之處)1.用化歸為計算矩形面積和逼近的思想方法求出曲邊遞形的面積的具體步驟為、
2024-12-08 08:44
【摘要】復(fù)數(shù)的概念數(shù)系的擴充自然數(shù)整數(shù)有理數(shù)無理數(shù)實數(shù)NZQR用圖形表示包含關(guān)系:復(fù)習(xí)回顧知識引入對于一元二次方程沒有實數(shù)根.012??x我們已知知道:12??x我們能否將實數(shù)集進行擴充,使得在新的數(shù)集中,該問題能得到圓滿解決呢?
2024-11-17 15:11
【摘要】《普通高中課程標準實驗教科書數(shù)學(xué)(選修2-2)》數(shù)系的擴充和復(fù)數(shù)的概念說課流程五教學(xué)過程數(shù)系的擴充和復(fù)數(shù)的概念數(shù)系的擴充與復(fù)數(shù)的引入是高中生必備的基礎(chǔ)知識.在本節(jié)中,學(xué)生將在問題情境中了解數(shù)系擴充的過程以及引入復(fù)數(shù)的必要性,學(xué)習(xí)復(fù)數(shù)的一些基本知識,體會人類理性思維在數(shù)
【摘要】(第一課時)單縣一中時克然多米諾骨牌問題情境一已知數(shù)列的通項公式為}{na22)55(???nnan(1)求出其前四項,你能得到什么樣的猜想?(2)你的猜想正確嗎?對于數(shù)列{},na)1(2111????nnnaaa)∈(*Nn
2024-11-17 12:01
【摘要】高二數(shù)學(xué)組徐瑞虹生活中經(jīng)常遇到求利潤最大、用料最省、效率最高等問題,這些問題通常稱為優(yōu)化問題.通過前面的學(xué)習(xí),我們知道,導(dǎo)數(shù)是求函數(shù)最大(?。┲档膹娪辛ぞ撸@一節(jié),我們利用導(dǎo)數(shù),解決一些生活中的優(yōu)化問題.創(chuàng)設(shè)情景實例探究:學(xué)校舉行慶祝五一勞動節(jié)活動,需要張貼海報進行宣傳.現(xiàn)讓你設(shè)計一張如圖所示的豎向張貼的海報,要
【摘要】甲和乙投入相同資金經(jīng)營同一商品,甲用1年時間掙到2萬元,乙用5個月時間掙到1萬元。從這樣的數(shù)據(jù)看來,甲、乙兩人誰的經(jīng)營成果更好?情境一:情境二:如右圖所示,向高為10cm的杯子等速注水,3分鐘注滿。若水深h是關(guān)于注水時間t的函數(shù),則下面兩個圖象哪一個可以表示上述函數(shù)?Ot/m
2024-11-17 15:20
【摘要】定積分的概念:在直角坐標系中,由連續(xù)曲線y=f(x),直線x=a、x=b及x軸所圍成的圖形叫做曲邊梯形。Oxyaby=f(x)一.求曲邊梯形的面積x=ax=b因此,我們可以用這條直線L來代替點P附近的曲線,也就是說:在點P附近,曲線可以看作直線(即在很小范圍內(nèi)
【摘要】§基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運算法則教學(xué)目標:1.熟練掌握基本初等函數(shù)的導(dǎo)數(shù)公式;2.掌握導(dǎo)數(shù)的四則運算法則;3.能利用給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運算法則求簡單函數(shù)的導(dǎo)數(shù)。教學(xué)重點:基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運算法則教學(xué)難點:基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運算
2024-11-20 03:14
【摘要】1.3.2函數(shù)的極值與導(dǎo)數(shù)(1)一、教學(xué)目標:理解函數(shù)的極大值、極小值、極值點的意義.掌握函數(shù)極值的判別方法.進一步體驗導(dǎo)數(shù)的作用.二、教學(xué)重點:求函數(shù)的極值.教學(xué)難點:嚴格套用求極值的步驟.三、教學(xué)過程:(一)函數(shù)的極值與導(dǎo)數(shù)的關(guān)系1、觀察下圖中的曲線a點的函數(shù)值f(a)比它臨近點的函數(shù)值都大.b點的函數(shù)值f(
2024-11-19 22:43
【摘要】§導(dǎo)數(shù)的四則運算法則學(xué)習(xí)目標思維脈絡(luò)1.能夠掌握導(dǎo)數(shù)的四則運算法則,并清楚四則運算法則的適用條件.2.會運用運算法則求簡單函數(shù)的導(dǎo)數(shù).3.初步使用轉(zhuǎn)化的方法,并利用四則運算法則求導(dǎo).121.導(dǎo)數(shù)的加法與減法法則兩個函數(shù)和(差)的導(dǎo)數(shù)等于這兩個函數(shù)導(dǎo)數(shù)的和
2024-11-18 00:49