【摘要】奇偶性第二課時函數(shù)奇偶性的性質問題提出、偶函數(shù)的定義分別是什么?、圖象分別有何特征??知識探究(一)思考1:是否存在函數(shù)f(x)既是奇函數(shù)又是偶函數(shù)?若存在,這樣的函數(shù)有何特征?f(x)=0思考2:一個函數(shù)就奇偶性而言有哪幾種可能情形?思考3:若f(x)是定
2024-11-11 09:02
【摘要】函數(shù)函數(shù)函數(shù)函數(shù)函數(shù)的概念1.請舉幾個學過的函數(shù)的例子.2.初中函數(shù)定義:在一個變化過程中,有兩個變量x和y,如果給定一個x值,就相應地確定了唯一的y值,那么我們就稱y是x的函數(shù),其中x是自變量,y是因變量.正比例函數(shù):y=kx
2024-11-18 15:32
【摘要】§初中我們學過哪些函數(shù)?)0(??kkxy正比例函數(shù):)0(??kxky反比例函數(shù):)0(???kbkxy一次函數(shù):)0(2????acbxaxy二次函數(shù):設在一個變化過程中有兩個變量x和y,如果對于x的每一個值,y都有唯一的值與它對應,那么就說y是x的函數(shù).其中x叫自
2024-11-09 09:22
【摘要】函數(shù)的奇偶性南京市三十九中學xyO如何用數(shù)學語言表述函數(shù)圖象關于y軸對稱呢?y=f(x)函數(shù)圖象關于y軸對稱.1xyOyxOxO1yxyOy=f(x)A(x0,f(x0))點A關于y軸的對稱點A’的坐標是_
2024-11-03 17:55
【摘要】數(shù)列請在棋盤的第1格子里放1顆麥子,在第2個格子里放2顆麥子,第3個格子里放4顆麥子,以此類推。后面第一格里的麥子是前一格子里的麥粒數(shù)的2倍,直到第64格。陛下您的國庫里麥子夠搬嗎?多少麥子?(1)國際象棋起源于古印度,關于國際象棋有這樣一個傳說,國王想賞賜國際象棋的發(fā)明者,于是有下面一段對話&
2024-11-18 15:30
【摘要】第一篇:《函數(shù)的奇偶性》教案 《函數(shù)的奇偶性》 一、教材分析 1.教材所處的地位和作用 “奇偶性”是人教A版第一章“集合與函數(shù)概念”的第3節(jié)“函數(shù)的基本性質”的第2小節(jié)。 奇偶性是函數(shù)的一條...
2024-10-28 15:46
【摘要】第一篇:函數(shù)的奇偶性說課稿 函數(shù)的奇偶性(說課稿) 同心縣回民中學馬萬 各位老師,大家好!今天我說課的課題是高中數(shù)學人教A版必修一第一章第三節(jié)”函數(shù)的基本性質”中的“函數(shù)的奇偶性”,下面我將從教...
2024-10-28 16:52
【摘要】制作人:吳智祥老師引入課題:f(x)=x2,求f(0),f(-1),f(1),f(-2),f(2),及f(-x),并畫出它的圖象。解:f(-2)=(-2)2=4f(2)=4f(0)=0,f(-1)=(-1)2=1f(1)=1f(-x)=(-x)2=x2f(x)=x3,求f(0),f
2024-11-10 01:05
2025-08-01 17:15
【摘要】曹家大院某院晉祠鼓樓晉祠碩亭太谷民居門墩石獅子請你欣賞xyoxyo2)(xxf?xxf?)(觀察下列兩個函數(shù)圖象并思考以下問題:(1)這兩個函數(shù)圖象有什么共同特征嗎?(2)相應的兩個函數(shù)值對應表是如何體現(xiàn)這些特征的?
2024-11-22 01:56
【摘要】函數(shù)的單調性和奇偶性(一)閱讀課本P58-P59,回答下列問題1、增函數(shù),減函數(shù)的定義;2、單調性,單調區(qū)間的定義.3、函數(shù)圖象如下圖,說出單調區(qū)間及其單調性.xy練習一1、求下列函數(shù)的單調區(qū)間(1)f(x)=x-1;(2)f(x)=-2x+3;(3)f(x)=2x2-x+2(4)f(x)=-x2-
2025-08-15 20:29
【摘要】xy0觀察下圖,思考并討論以下問題:(1)這兩個函數(shù)圖象有什么共同特征嗎?(2)相應的兩個函數(shù)值對應表是如何體現(xiàn)這些特征的?f(-3)=9=f(3)f(-2)=4=f(2)f(-1)=1=f(1)f(-3)=3=f(3)f(-2)=2=f(2)f(-1)=1=f(1)f(x)=x2f(x)=|x|
2024-11-21 02:08
2024-11-06 20:13
【摘要】f(x)=x2,求f(-2),f(2),f(-1),f(1),及f(-x),并畫出它的圖象。解:f(-2)=(-2)2=4f(2)=4f(-1)=(-1)2=1f(1)=1f(-x)=(-x)2=x2f(-2)=f(2)f(-1)=f(1)f(-x)=f(x)-xxf(-x)f(x)xy
2025-08-16 01:30