【摘要】二、高階導數(shù)的運算法則第三節(jié)一、高階導數(shù)的概念機動目錄上頁下頁返回結束高階導數(shù)與隱函數(shù)的導數(shù)第二章三、隱函數(shù)求導一、高階導數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運動機動目錄上頁下頁返回
2025-05-12 21:33
【摘要】山東農(nóng)業(yè)大學高等數(shù)學主講人:蘇本堂一、空間曲線的一般方程二、空間曲線的參數(shù)方程三、空間曲線在坐標面的投影§空間曲線及其方程山東農(nóng)業(yè)大學高等數(shù)
2025-07-25 04:16
【摘要】第18章隱函數(shù)定理及其應用§1隱函數(shù)一、隱函數(shù)概念.).sinsin(sin,1,22顯函數(shù)這種形式的函數(shù)稱為如式是自變量的某個算式若函數(shù)的因變量的表達zxyzxyeuyxzxyz??????.J,I)1((1),x,Jy,Ix,YJX
2025-06-17 06:29
【摘要】隱函數(shù)的概念顯函數(shù):因變量可由自變量的某一表達式來表示的函數(shù).例如,隱函數(shù):自變量與因變量之間的對應關系是由某一個方程式所確定的函數(shù).例如,,sin13xy??.22yxz??,3/23/23/2ayx??.03333????xyz
2025-04-29 03:21
【摘要】西南民族大學經(jīng)濟學院毛瑞華微積分(2021~2021下)1§多元復合函數(shù)與隱函數(shù)微分法一、多元復合函數(shù)微分法定理設z=f(u,v)在(u,v)處可微,u=u(x,y),v=v(x,y)在(x,y)處的偏導數(shù)存在,則復合函數(shù)z=f[u(x,y),v(x,y)]在(x,y)處的偏導數(shù)
2025-10-10 14:52
【摘要】高階導數(shù)1、顯函數(shù)的高階導數(shù)(2-n階)2、隱函數(shù)和參數(shù)方程的2階導數(shù)一、顯函數(shù)高階導數(shù)的定義定義.)())((,)()(lim))((,)()(0處的二階導數(shù)在點為函數(shù)則稱存在即處可導在點的導數(shù)如果函數(shù)xxfxfxxfxxfxfxxfxfx??????????????記作
2025-05-13 06:01
【摘要】三角函數(shù)的公式二????公式二記憶方法:利用圖形sin()sincos()costan()tan?????????????????溫故知新公式三???sin()sin?????cos()cos????tan()t
2025-11-13 00:40
【摘要】一、隱函數(shù)求導法二、由參數(shù)方程所確定的函數(shù)的導數(shù)§上頁下頁鈴結束返回首頁上頁下頁鈴結束返回首頁一、隱函數(shù)的導數(shù)?顯函數(shù)與隱函數(shù)下頁(1)顯函數(shù):我們把函數(shù)y可由自變量x的解析式稱為顯函數(shù).)(xfy?也可以確定一個函數(shù),143??yx對
2025-07-23 19:15
【摘要】簡單復合函數(shù)的求導法則:設函數(shù)u(x)、v(x)是x的可導函數(shù),則1)(()())''()'()uxvxuxvx???2)(()())''()()()'()uxvxuxvxuxvx???推論:[
2025-11-03 01:24
【摘要】復合函數(shù)求導法則性質(zhì)且點可導在則點可導在而點可導在設,)]([,)()(,)(0000xxgfyxguufyxxgu????)63(dddddd??xuuyxy00))]([(ddxxxxxgfxy????))]([(dd??xgfxy寫成導函數(shù)的形式為簡寫為)()(00x
2026-01-11 05:44
【摘要】第十節(jié)一、隱函數(shù)的導數(shù)二、由參數(shù)方程所確定的函數(shù)的導數(shù)隱函數(shù)和由參數(shù)方程所確定的函數(shù)的導數(shù)第二章一、隱函數(shù)的導數(shù)1.定義注1°所確定是由若0),()()(???yxFDxxyy;則)(0)](,[DxxyxF??隱函數(shù),中可由若隱函數(shù)0),()()(???yxFDxxyy
2025-07-24 06:11
【摘要】§高階導數(shù)、高階偏導數(shù)一、高階導數(shù)二、高階偏導數(shù)一、高階導數(shù)的定義問題:變速直線運動的加速度.),(tfs?設)()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(0處的二階導
2025-05-07 12:10
【摘要】§隱函數(shù)與參量函數(shù)微分法一、隱函數(shù)的導數(shù)定義:由方程F(x,y)=0所確定的函數(shù)y=y(x)稱為隱函數(shù).y=f(x)形式的函數(shù)稱為顯函數(shù).如果從F(x,y)=0中解得y=f(x),稱為隱函數(shù)的顯化.問題:隱函數(shù)不易顯化或不能顯化如何求導?例1:求由方程xy–e
2025-07-24 17:10
【摘要】一、多元復合函數(shù)求導法則二、小結思考題第四節(jié)多元復合函數(shù)的求導法則一、多元復合函數(shù)的求導法則在一元函數(shù)微分學中,復合函數(shù)的求導法則起著重要的作用.現(xiàn)在我們把它推廣到多元復合函數(shù)的情形.下面按照多元復合函數(shù)不同的復合情形,分三種情況進行討論.定理1如果函數(shù))(tu?
2025-08-21 12:43
【摘要】第四節(jié)、隱函數(shù)的導數(shù)、由參數(shù)方程確定的函數(shù)的導數(shù)隱函數(shù)及由參數(shù)方程所確定的函數(shù)的導數(shù)第二章、隱函數(shù)的導數(shù)若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)可確定y是x的函數(shù),但此隱函數(shù)不能顯化.函數(shù)為隱函數(shù).則稱此
2025-07-24 04:26