【摘要】立體幾何中的軌跡問(wèn)題高考數(shù)學(xué)有一類學(xué)科內(nèi)的綜合題,它們的新穎性、綜合性,值得我們重視,在知識(shí)網(wǎng)絡(luò)交匯點(diǎn)處設(shè)計(jì)試題是高考命題改革的一個(gè)方向,以空間問(wèn)題為為背景的軌跡問(wèn)題作為解析幾何與立體幾何的交匯點(diǎn),由于知識(shí)點(diǎn)多,數(shù)學(xué)思想和方法考查充分,求解比較困難。通常要求學(xué)生有較強(qiáng)的空間想象能力,以及能夠把空間問(wèn)題轉(zhuǎn)化到平面上,再結(jié)合解析幾何方法求解,以下精選幾個(gè)問(wèn)題來(lái)對(duì)這一問(wèn)題進(jìn)行探討,旨在探索題型規(guī)律
2025-09-25 16:57
【摘要】第一篇:高中立體幾何證明方法 高中立體幾何 一、平行與垂直關(guān)系的論證 由判定定理和性質(zhì)定理構(gòu)成一套完整的定理體系,在應(yīng)用中:低一級(jí)位置關(guān)系判定高一級(jí)位置關(guān)系;高一級(jí)位置關(guān)系推出低一級(jí)位置關(guān)系,前...
2025-10-19 20:01
【摘要】第一篇:用向量方法解立體幾何題(老師用) 用向量方法求空間角和距離 在高考的立體幾何試題中,求角與距離是常考查的問(wèn)題,其傳統(tǒng)的“三步曲”解法:“作圖、證明、解三角形”,作輔助線多、技巧性強(qiáng),是教學(xué)...
2025-10-05 09:02
【摘要】一、復(fù)習(xí)目標(biāo):1、理解直線的方向向量與平面的法向量并會(huì)求直線的方向向量與平面的法向量。2、理解和掌握向量共線與共面的判斷方法。3、用向量法會(huì)熟練判斷和證明線面平行與垂直。立體幾何中的向量方法(一)第十三章《空間向量與立體幾何》二、重難點(diǎn):概念與方法的運(yùn)用三、教學(xué)方法:探析歸納,講練結(jié)合。四、教學(xué)過(guò)程(一)、
2025-10-31 08:06
【摘要】第一篇:解立體幾何方法總結(jié) 啟迪教育 解立體幾何方法總結(jié) 1坐標(biāo)系的建立: 2空間向量的運(yùn)算: 3求異面直線的夾角 4法向量的求法 5證明線面平行方法: 6求線和面的夾角 7求幾何體...
2025-11-03 18:00
【摘要】第一篇:立體幾何常見證明方法 立體幾何方法歸納小結(jié) 一、線線平行的證明方法 1、根據(jù)公理4,證明兩直線都與第三條直線平行。 2、根據(jù)線面平行的性質(zhì)定理,若直線a平行于平面A,過(guò)a的平面B與平面...
2025-11-06 05:33
【摘要】第一篇:,第2課時(shí),利用空間向量證明平行、垂直關(guān)系 立體幾何中的向量方法(2) 2、利用空間向量證明平行、垂直關(guān)系 基礎(chǔ)性練習(xí): 1、在空間四邊形ABCD中,E、F分別是AB、BC的中點(diǎn),則A...
2025-10-05 04:33
【摘要】立體幾何題型與方法一、考點(diǎn)回顧1.平面(1)平面的基本性質(zhì):掌握三個(gè)公理及推論,會(huì)說(shuō)明共點(diǎn)、共線、共面問(wèn)題。(2)證明點(diǎn)共線的問(wèn)題,一般轉(zhuǎn)化為證明這些點(diǎn)是某兩個(gè)平面的公共點(diǎn)(依據(jù):由點(diǎn)在線上,線在面內(nèi),推出點(diǎn)在面內(nèi)),這樣,可根據(jù)公理2證明這些點(diǎn)都在這兩個(gè)平面的公共直線上。(3)證明共點(diǎn)問(wèn)題,一般是先證明兩條直線交于一點(diǎn),再證明這點(diǎn)在第三條直線上,而這一點(diǎn)是兩
2025-07-24 12:16
【摘要】空間向量的引入為代數(shù)方法處理立體幾何問(wèn)題提供了一種重要的工具和方法,解題時(shí),可用定量的計(jì)算代替定性的分析,從而回避了一些嚴(yán)謹(jǐn)?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問(wèn)題,也是高考的熱點(diǎn)之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角與距離的問(wèn)題。建立空間直角坐標(biāo)系,解立體幾何題1122330???abab
2025-10-31 01:53
【摘要】立體幾何中的翻折問(wèn)題連州中學(xué)周騰達(dá)圖形的展開與翻折問(wèn)題就是一個(gè)由抽象到直觀,由直觀到抽象的過(guò)程.在歷年高考中以圖形的展開與折疊作為命題對(duì)象時(shí)常出現(xiàn),因此,關(guān)注圖形的展開與折疊問(wèn)題是非常必要的.折疊問(wèn)題2020年高考的熱點(diǎn),預(yù)測(cè)明年高考也應(yīng)是一個(gè)熱點(diǎn).把一個(gè)平面圖形按某種要求折
2025-10-31 05:40
【摘要】1.(2009北京卷)(本小題共14分)如圖,四棱錐的底面是正方形,,點(diǎn)E在棱PB上.(Ⅰ)求證:平面;(Ⅱ)當(dāng)且E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小.解:如圖,以D為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)則,(Ⅰ)∵,∴,∴AC⊥DP,AC⊥DB,∴AC⊥平面PDB,∴平面.(Ⅱ)當(dāng)且E為PB的中點(diǎn)時(shí),,
2025-08-05 10:17
【摘要】《平面向量》與《立體幾何》測(cè)試卷一.選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一個(gè)符合題目的要求)1.有四個(gè)式子:1、.2、.3、.4、.5、其中正確的個(gè)數(shù)有()A、1個(gè).B、2個(gè).C、3
2025-03-25 01:21
【摘要】第一篇:立體幾何題證明方法 立體幾何題型與方法 1.平面的基本性質(zhì):掌握三個(gè)公理及推論,會(huì)說(shuō)明共點(diǎn)、共線、共面問(wèn)題。 (1)證明點(diǎn)共線的問(wèn)題,一般轉(zhuǎn)化為證明這些點(diǎn)是某兩個(gè)平面的公共點(diǎn)(依據(jù):由點(diǎn)...
2025-11-06 05:28
【摘要】利用空間向量解決立體幾何問(wèn)題數(shù)學(xué)專題二學(xué)習(xí)提綱二、立體幾何問(wèn)題的類型及解法1、判斷直線、平面間的位置關(guān)系;(1)直線與直線的位置關(guān)系;(2)直線與平面的位置關(guān)系;(3)平面與平面的位置關(guān)系;2、求解空間中的角度;3、求解空間中的距離。1、直線的方向向量;2、平面的法向量。
2025-11-16 22:52
【摘要】空間向量的引入為代數(shù)方法處理立體幾何問(wèn)題提供了一種重要的工具和方法,解題時(shí),可用定量的計(jì)算代替定性的分析,從而回避了一些嚴(yán)謹(jǐn)?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問(wèn)題,也是高考的熱點(diǎn)之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角的問(wèn)題。數(shù)量積:夾角公式:異面直線所成角的范圍:思考:結(jié)論:題型
2025-11-02 02:54