【摘要】,2,3三個數(shù)字組成一個四位數(shù),規(guī)定這三個數(shù)必須全部使用,且同一數(shù)字不能相鄰出現(xiàn),這樣的四位數(shù)有( )答案 B解析 利用樹狀圖考察四個數(shù)位上填充數(shù)字的情況,如:1,共可確定8個四位數(shù),但其中不符合要求的有2個,所以所確定的四位數(shù)應(yīng)有18個,故選B.,現(xiàn)從男生中選2人,女生中選1人,分別去做3種不同的工作,共有90種不同的選法,則男,女生人數(shù)為( ),6,5
2025-03-25 02:36
【摘要】?帳紬?萂?????恰脥満???愰?脿??)?蓁嚈簬?鼿??總?瀉?艁?愐"?怉?艁?愐????橜?郝??????皆?老?舁?愐?邵????鐱侼???????弿?送?????肁??老?塂?師?朡?鞕?綞稿??????攁????攐?????????懷?????蟞?粞_?塽?????萿悐唄??朿嫻獰???悠????????纕祚?呞????涏?????懌??└葫????偔吭?絡(luò)?哾?諸
2025-06-28 10:43
【摘要】......“排列、組合”??紗栴}[題型分析·高考展望] 該部分是高考數(shù)學(xué)中相對獨特的一個知識板塊,知識點并不多,但解決問題的方法十分靈活,主要內(nèi)容是分類加法計數(shù)原理和分步乘法計數(shù)原理、排列與組合、二項式定理等,
2025-03-26 00:39
【摘要】《排列組合的綜合運用》練習(xí)題一、選擇題:1.()A.70B.58C.56D.24,要求身高最高的在中間,且往兩邊身高依次遞減,則不同的排法有()A.18種B.20種
2025-06-19 08:47
【摘要】.公式P是指排列,從N個元素取R個進(jìn)行排列。公式C是指組合,從N個元素取R個,不進(jìn)行排列。N-元素的總個數(shù)R參與選擇的元素個數(shù)!-階乘,如????9?。?*8*7*6*5*4*3*2*1從N倒數(shù)r個,表達(dá)式應(yīng)該為n*(n-1)*(n-2)..(n-r+1);?????&
2025-07-26 05:35
【摘要】排列組合綜合問題教學(xué)目標(biāo)通過教學(xué),學(xué)生在進(jìn)一步加深對排列、組合意義理解的基礎(chǔ)上,掌握有關(guān)排列、組合綜合題的基本解法,提高分析問題和解決問題的能力,學(xué)會分類討論的思想.教學(xué)重點與難點重點:排列、組合綜合題的解法.難點:正確的分類、分步.教學(xué)用具投影儀.教學(xué)過程設(shè)計(一)引入師:現(xiàn)在我們大家已經(jīng)學(xué)習(xí)和掌握了一些排列問題和組
2025-03-25 02:37
【摘要】排列組合試題精選一、選擇題1、如圖,是中國西安世界園藝博覽會某區(qū)域的綠化美化示意圖,其中A、B、C、D是被劃分的四個區(qū)域,現(xiàn)有6種不同顏色的花,要求每個區(qū)域只能栽同一種花,允許同一顏色的花可以栽在不同的區(qū)域,但相鄰的區(qū)域不能栽同一色花,則不同的栽種方法共有(???)種。A.120?????
【摘要】排列組合常見題型及解題策略一.可重復(fù)的排列求冪法:重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關(guān)鍵是在正確判斷哪個底數(shù),哪個是指數(shù)【例1】(1)有4名學(xué)生報名參加數(shù)學(xué)、物理、化學(xué)競賽,每人限報一科,有多少種不同的報名方法?(2)有4名學(xué)生參加爭奪數(shù)學(xué)、
2025-08-04 18:28
【摘要】排列、組合問題分類解析一、解決排列、組合問題常用方法:兩個原理、優(yōu)限法、排除法、捆綁法(視一法)、插空法、隔板法、等可能法、固定模型、樹圖法等,但最基礎(chǔ)的是“兩個原理”.二、排列、組合問題大體分以下幾個類型類型一:排隊問題例1:7人站成一排,求滿足下列條件的不同站法:(1)甲不站排頭,乙不站排尾____________________(2)甲、乙兩人不站兩端_____
2025-08-05 06:55
【摘要】排列組合排列問題1從甲、乙、丙3名同學(xué)中選出2名參加某天的一項活動,其中1名同學(xué)參加上午的活動,另1名同學(xué)參加下午的活動,有多少種不同的方法?問題引導(dǎo)開門見山3種2種3×2=6種甲乙丙乙甲丙丙甲乙分析:樹形圖
2025-07-25 13:58
【摘要】?加法原理和乘法原理(1-1)從甲地到乙地,可以乘火車,也可以乘汽車,一天中火車有3班,汽車有2班,那么一天中,乘坐這些交通工具從甲地到乙地共有多少種方法?分析:因為一天中乘火車有3種走法,乘汽車有2種走法,每一種走法都可以從甲地到乙地,所以,共有3+2=5種不同的走法,如圖所示(1-2)從甲地到乙地,可以乘火車,也可以乘汽車,還可以乘輪船一天中,火車有4班,
2025-08-05 18:32
【摘要】排列組合復(fù)習(xí)學(xué)案1重復(fù)排列“求冪運算”重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù)。把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利解題。例18名同學(xué)爭奪3項冠軍,獲得冠軍的可能性有()2.特殊元素(位置)用優(yōu)先法:把有限制條件的元素(位置)稱為特殊元素(位置),可優(yōu)先將它(們)安排好,后再安排其它元素。
2025-04-17 01:31
【摘要】12除做到:排列組合分清,加乘原理辯明,避免重復(fù)遺漏外,還應(yīng)注意積累排列組合問題得以快速準(zhǔn)確求解。直接法特殊元素法例1用1,2,3,4,5,6這6個數(shù)字組成無重復(fù)的四位數(shù),試求滿足下列條件的四位數(shù)各有多少個(1)數(shù)字1不排在個位和千位(2)數(shù)字1不在個位,數(shù)字6不在千位。分析:(1)個位和千位有5個數(shù)字可供選擇,其余2位有四個可供選擇,由乘法原理:=240
【摘要】排列組合排列定義???從n個不同的元素中,取r個不重復(fù)的元素,按次序排列,稱為從n個中取r個的無重排列。排列的全體組成的集合用P(n,r)表示。排列的個數(shù)用P(n,r)表示。當(dāng)r=n時稱為全排列。一般不說可重即無重??芍嘏帕械南鄳?yīng)記號為P(n,r),P(n,r)。組合定義從n個不同元素中取r個不重復(fù)的元素組成一個子集,而不考慮其元素的順序,稱
2025-06-25 23:09
【摘要】完美WORD格式專題三:排列、組合及二項式定理一、排列、組合與二項式定理【基礎(chǔ)知識】(加法原理).(乘法原理).==.(n,m∈N*,且m≤n).===(n,m∈N*,且m≤n).:(1)=;(2)+=(3).:.:
2025-06-25 22:56