【正文】
即 0001 22x y Cpp ? ? ? ?? ? ? ? ( 3) 當(dāng)且僅當(dāng) ? ? ? ?0 1 0 1:y y x x ?? ? ? ? 01pp l? ( 3)式取等號(hào) 即點(diǎn)到直線的距離公式 0001 22x y Cpp ? ? ? ?? ? ? ? 柯西不等式求解有關(guān)三角形的問(wèn)題 ??6 ( 1) 我們引用第二章的例子稍加變形來(lái)說(shuō)明 .2 33s i ns i ns i n2 33,CBA ????? nCnBnAABC 求證:的三個(gè)內(nèi)角是三角形、已知 證 由柯西不等式有 )s i ns i n) ( s i n111()s i n1s i n1s i n1()s i ns i n( s i n 22222222 nCnBnAnCnBnAnCnBnA ?????????????即 )s i ns i n( s i n3)s i ns i n( s i n 2222 nCnBnAnCnBnA ????? ( 1) 因?yàn)? 2 2c o s12 2c o s1c o s1s i ns i ns i n 2222 nCnBnAnCnBnA ???????? )(故)()()(2)c o s (c o s2s i ns i ns i nc o sc o s2)c o s (c o sc o s2)c o s (c o sc o s2)2c o s2( c o s21c o s222222222nCnBAnCnBnAnCnBnAnCnBnCnBnAnCnBnCnBnAnCnBnA???????????????????????? 16 )(所以又因?yàn)?49412c o sc o s22)c o s1(c o s2)c o s1(c o s2)c o s (c o s22222??????????? ??????????nAAnAnAnAnAnCnBA 將( 3)代入( 2)得 )( 449s i ns i ns i n 222 ??? nCnBnA 將( 4)代入( 1)得 493)s ins in( s in 2 ???? nCnBnA 2 33s ins ins in2 33 ????? nCnBnA所以 (2) 設(shè) p 是 ABC? 內(nèi)的一點(diǎn), zyx , 是 p到三邊 a,b,c 的距離, R是 ABC? 外接圓的半徑。 正確做法 ??6 解 21111 ?????????? abababbaababbbaa )()( 21 .225425)1(1)1(121,2254252)1)(1(2)1(1)1(1.21425)(2172)16(172)161161161(2222222171564171616116和分別為的最小值)及()(所以時(shí)成立。老師細(xì)心耐心的教導(dǎo),嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度。 xxfxfxxfxxf 上式即為我們所證得的 Jensen 不等式 . 23 致謝 首先我要感謝我的指導(dǎo)老師歐建光老師,在他的悉心,耐心指導(dǎo)下,我的論文才得以完成。 的最小值。求滿足 yxpyxyx ???? 2,623, 22 ??6 解 因?yàn)?6)2()3(,623 2222 ???? yxyx 即 ,由柯西不等式, yxyxp 2213322 ??????116611)2()3()21()32( 2222 ??????? yx 等號(hào)成立當(dāng)且僅當(dāng) 時(shí)成立。 ( 1)二維形式 2 2 2 2 2( ) ( ) ( )a b c d a c b d? ? ? ? yxQ (c, d )P(a , b )O 圖 21 如圖,可知線段 OP , OQ及 PQ的長(zhǎng)度分別是 2 2 2 2 2 2, , ( ) ( )O P a b O Q c d P Q a c b d? ? ? ? ? ? ? ? ? 表示 OP 與 OQ的夾角。本文主要探討幾個(gè)著名不等式之間的內(nèi)在聯(lián)系,通過(guò)他們的聯(lián)系探索不等式的證明方法。 20世紀(jì) 90 年代以 來(lái),我國(guó)一大批學(xué)者如楊必成,徐利治教授等對(duì)不等式及其 證明方法與 研究 方面 取得了舉世矚目的成果。 關(guān)鍵詞 : 凸函數(shù) ;不等式; 2 Inequality proof and its application Wangnaize Oujiang College, Wenzhou University, Wenzhou, Zhejiang, 325027 Abstract: Inequality proof and its application in mathematics has a indispensable role and status, from elementary mathematics to higher mathematics, inequality has been and we were like peas and carrots, its application range is very wide, is an important part of the capacity of mathematics teaching. In the inequality proof process need to use many mathematical thought, bined with many important mathematical content, this paper mainly introduces several famous between inequality proof, use, and contact, help you distinguish between solve how to reasonably and effectively use the inequality to achieve their desired expected effect. These a few inequality is we often in the study will use, concrete, it is through the convex function related definition and nature, and then introduce Jensen inequality, Jensen inequality is derived by the holder inequality, from holder inequality we see, as long as everyone is a widely known as the deformation of Cauchy inequality. And Cauchy inequality is discussed in this paper the key content, we will mainly discuss the Cauchy inequality several main forms and relevant proof, examples of application and so on. After that we will through the Cauchy inequality is famous mean inequality, from mean inequality back to Jensen inequality related content. So far, this paper discusses the important content. Keywords: convex functions。在不等式的證明過(guò)程中需要用到諸多的數(shù)學(xué)思想,結(jié)合了許多重要的數(shù)學(xué)內(nèi)容,本篇論文主要介紹幾個(gè)著名不等式之 間證明,運(yùn)用,以及聯(lián)系,幫助大家區(qū)分解決如何合理有效的運(yùn)用這些不等式來(lái)達(dá)到自己所想要的預(yù)期效果。 自從著名數(shù)學(xué)家 H. Hardy,J. E. Little wood 和 G. Pl ya 的著作 Inequalities 由 Cambridge University Press 于 1934 年出版以來(lái) , 數(shù)學(xué)不等式理論及其應(yīng)用的研究正式登場(chǎng) , 成為一門(mén)新興的數(shù)學(xué)學(xué)科 , 從此不等式不再是一些零星散亂的、孤立的公式綜合 , 它已發(fā) 展成為一套系統(tǒng)的科學(xué)理論。例如匡繼昌先生的專著《常用不等式》一書(shū)由于供不應(yīng)求 。因此熟練掌握不等式證明的幾種方法并能靈活運(yùn)用 常用的證明方法,對(duì)以后的學(xué)習(xí)有著非常重要的意義。 ( 2)三維形式 2 2 2 2 2 2 21 2 3 1 2 3 1 1 2 2 3 3( ) ( ) ( )a a a b b b a b a b a b? ? ? ? ? ? ? 對(duì)于三維情形,設(shè) 1 2 3 1 2 3( , , ) , ( , , )P a a a Q b b b是不同于原點(diǎn) (0,0,0)O 的兩個(gè)點(diǎn),則 OP 與OQ之間的夾角 ? 的余弦有 1 1 2 2 3 32 2 2 2 2 21 2 3 1 2 3c o sa b a b a ba a a b b b? ??? ? ? ? ? ? 又因?yàn)?2cos 1?? ,得到柯西不等式的三維形式 2 2 2 2 2 2 21 2 3 1 2 3 1 1 2 2 3 3( ) ( ) ( )a a a b b b a b a b a b? ? ? ? ? ? ? 當(dāng)且僅當(dāng) ,OPQ 三點(diǎn)共線時(shí),等號(hào)成立;此時(shí)只要這里的 1 2 3,bb b 都不是零,就有3121 2 3aaab