freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

不等式的多種證明方法(存儲(chǔ)版)

2025-10-30 00:24上一頁面

下一頁面
  

【正文】 b1c即 ++179。an≤a1+a2+188。2x3+x2 證明 n(n+1)n+1+++....+(n1).分析 題中含n,但此題用數(shù)學(xué)歸納法不易證明,++188。正解:應(yīng)用比較法:yn1xn+xn1yn1x1y=(xnyn)(xn1yn1)xnyn① 當(dāng)x0,y0時(shí),(xnyn)(xn1yn1)≥ 0,(xy)n 0所以(xnyn)(xn1yn1)xnyn≥0故:yn1xn+xn1yn≥ 1x1y② 當(dāng)x,y有一個(gè)是負(fù)值時(shí),不妨設(shè)x0,y0,所以x|y|又n為偶數(shù)時(shí),所以(xnyn)(xn1yn1)0 又(xy)n 0,所以(xnyn)(xn1yn1)xnyn ≥0即 yn1xn+xn1yn≥ 1x1y綜合①②知原不等式成立第四篇:不等式證明若干方法安康學(xué)院 數(shù)統(tǒng)系數(shù)學(xué)與應(yīng)用數(shù)學(xué) 專業(yè) 11 級(jí)本科生論文(設(shè)計(jì))選題實(shí)習(xí)報(bào)告11級(jí)數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)《科研訓(xùn)練2》評(píng)分表注:綜合評(píng)分179。2bc+b用數(shù)學(xué)歸納法證題時(shí)的兩個(gè)步驟缺一不可。1x,求證0<A<1證明: ∵x,y∈R+,且xy=1,x=secθ,y=tanθ,(0<θ<xy)∴ A=(secθ1secθ(tanθ+1tanθ∵(a3+b3)(a2b+ab2)=a2(ab)b2(ab)=(ab)(a2b2)證明: =(ab)2(a+b)又∵(ab)2≥0a+b≥0∴(ab)2(a+b)≥0即a3+b3≥a2b+ab2例2 設(shè)a、b∈R+,且a≠b,求證:aabb>abba分析:由求證的不等式可知,a、b具有輪換對(duì)稱性,因此可在設(shè)a>b>0的前提下用作商比較法,作商后同“1”比較大小,從而達(dá)到證明目的,步驟是:10作商20商形整理30判斷為與1的大小證明:由a、b的對(duì)稱性,不妨解a>b>0則aabbabba=aabbba=(ab)ab∵ab0,∴ab1,ab0∴(ab)ab(ab)0=1即aabbabba>1,又abba>0∴aabb>abba練習(xí)1 已知a、b∈R+,n∈N,求證(a+b)(an+bn)≤2(an+1+bn+1)2基本不等式法利用基本不等式及其變式證明不等式是常用的方法,常用的基本不等式及變形有:(1)若a、b∈R,則a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時(shí),取等號(hào))(2)若a、b∈R+,則a+b≥ 2ab(當(dāng)且僅當(dāng)a=b時(shí),取等號(hào))(3)若a、b同號(hào),則 ba+ab≥2(當(dāng)且僅當(dāng)a=b時(shí),取等號(hào))例3 若a、b∈R,|a|≤1,|b|≤1則a1b2+b1a2≤1分析:通過觀察可直接套用: xy≤x2+y22證明: ∵a1b2b1a2≤a2+(1b2)2+b2(1a2)2=1∴b1a2+a1b2≤1,當(dāng)且僅當(dāng)a1+b2=1時(shí),等號(hào)成立練習(xí)2:若 ab0,證明a+1(ab)b≥33綜合法綜合法就是從已知或已證明過的不等式出發(fā),根據(jù)不等式性質(zhì)推算出要證明不等式。(+n+1)(n+1)180。31180。(2n+)進(jìn)行裂項(xiàng)(2n)180。1++4+n211=21180。下面我們就來就一個(gè)高考試卷中經(jīng)常出現(xiàn)的不等式做出討論。在此介紹的四種方法僅需要根據(jù)命題本身的已知條件或常用結(jié)論即可證明。Proof。其中基礎(chǔ)類證明方法是最簡(jiǎn)單的證明,包括比較法、分析法、放縮法、綜合法;延伸類證明方法則是通過代換、構(gòu)造、轉(zhuǎn)化等思想將原不等式變化為簡(jiǎn)單的形式再予以證明,比如換元法、引入?yún)⒆兞糠ā?gòu)造輔助函數(shù)法等等;特殊類證明方法是針對(duì)一些特殊類型的不等式結(jié)構(gòu)或提問方式,采取相應(yīng)的特殊證明方法可以使得證明更加簡(jiǎn)潔,就像反證法、數(shù)學(xué)歸納法、數(shù)形結(jié)合法等等。根據(jù)在校期間從大學(xué)課程中所學(xué)的專業(yè)知識(shí),通過課本、資料及網(wǎng)絡(luò)等渠道收集各種類型的不等式習(xí)題,然后依據(jù)其不同的思想與方法可以歸納為三大類型,即基礎(chǔ)類證明方法、延伸類證明方法和特殊類證明方法。不等式的重要作用是十分明顯的,因?yàn)樵谌粘5纳?、生產(chǎn)和科學(xué)研究中到處用到不等式的知識(shí);而不等式的證明更體現(xiàn)了不等式的另一方面,它在數(shù)學(xué)領(lǐng)域中占有核心地位,它貫穿于初等數(shù)學(xué)和高等數(shù)學(xué)的方方面面。0,則a179。ln(1+)ln(1+2n1)+n+2+2n我們將這n個(gè)不等式疊加起來可以不難得到,n+1+21nln(1+1n)++ln(1+2n)=ln(1n)=ln2,因此不等式得證。n1,下面我)2們來研究一下該如何裂項(xiàng)。+5=注:處理+++(2n11)180。2n+(+180。希望廣大的考生好好培養(yǎng)對(duì)于柯 西不等式的認(rèn)識(shí)。要證cc2ab<a<c+c2ab只需證c2ab<ac<c2ab證明:即證 |ac|<c2ab即證(ac)2<c2ab即證 a22ac<ab∵a>0,∴即要證 a2c<b 即需證2+b<2c,即為已知∴ 不等式成立練習(xí)4:已知a∈R且a≠1,求證:3(1+a2+a4)>(1+a+a2)25放縮法放縮法是在證明不等式時(shí),把不等式的一邊適當(dāng)放大或縮小,利用不等式的傳遞性來證明不等式,是證明不等式的重要方法,技巧性較強(qiáng)常用技巧有:(1)舍去一些正項(xiàng)(或負(fù)項(xiàng)),(2)在和或積中換大(或換?。┠承╉?xiàng),(3)擴(kuò)大(或縮?。┓质降姆肿樱ɑ蚍帜福┑?。s2mθ2k+22k+1>2k+32②對(duì)于②〈二〉2k+2>2k+12平方添項(xiàng)運(yùn)用此法必須注意原不等號(hào)的方向例14 :對(duì)于一切大于1的自然數(shù)n,求證:(1+13)(1+15)…(1+12n1> 2n+1 2)證明:∵b > a> 0,m> 0時(shí)ba> b+ma+m∵ [(1+13)(1+15)…(1+12n1)]2=(465…2n2n1)(465…2n2n1)>(576…2n+12n)(465…2n2n1)=2n+13> 2n+14>∴(1+13)(1+15)…(1+12n1)>2n+1 2)3平均值添項(xiàng)例15:在△ABC中,求證sinA+sinB+sinC≤332分析:∵A+B+C=π,可按A、B、C的算術(shù)平均值添項(xiàng)sin π3證明:先證命題:若x>0,y<π,則sinx+siny≤2sin x+y2(當(dāng)且僅當(dāng)x=y時(shí)等號(hào)成立)∵0<x+y2< π,π2< xy2< π2sinx+siny=2sin x+y2cosxy2∴上式成立反復(fù)運(yùn)用這個(gè)命題,得sinA+sinB+sinC+sin π3≤2sinA+B2+2sinc+π32≤2方法; 應(yīng)用不等式在數(shù)學(xué)中占重要地位,由于其本身的完美性及證明的困難性,使不等式成為各類考試中的熱點(diǎn)試題,證明不等式的途徑是對(duì)原不等式作代數(shù)變形,在初等數(shù)學(xué)中常用的方法有放縮法、代換法、歸納法、,、中學(xué)中有關(guān)不等式的證明方法 (1)比較法:證明不等式的基本方法,適應(yīng)面寬.①相減比較法—欲證AB,則證AB0.②相除比較法—欲證AB(A0,B0),則證1.(2)綜合法:利用平均不等式、二次方程根的判別式、二項(xiàng)式定理、數(shù)列求和等等。+nn2...n+1=nn+1(再變形)=2323nn11111n+1+++....+(1+1)+(1+)+....+(1+)23n=2n證:nnn+1+1n12131n第2頁(共13頁)數(shù)學(xué)系數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)2009級(jí)年論文(設(shè)計(jì))2+ =1n34n+1++....+23nn234....n+1=nn+1n23n131n所以 n(n+1)n+1+++....+ 求證:1112+11+?+n(n1,n為自然數(shù))2n 分析 與自然數(shù)有關(guān)的問題,=K時(shí)成立,需證n=K+1時(shí)也成立,需證明K+K+1K+1,可采用“湊項(xiàng)”的方法: K+1KK+1+1KK+1K+11===K+1K+1K+1K+1K+111+12=2+12=2+2,右邊=2,所以, 2 證:(1)當(dāng)n=2時(shí),左邊=左邊右邊.(2)假設(shè)n=K時(shí), 1111+11+?
點(diǎn)擊復(fù)制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1