【摘要】二倍角的正弦、余弦、正切公式一、三角變換中的“一致代換”法在三角變換中,“一致代換”法是一種重要的方法,所謂“一致代換”法,即在三角變換中,化“異角”“異名”“異次”為“同角”“同名”“同次”的方法.它主要包括:在三角函數(shù)式中,①如果只含同角三角函數(shù),一般應從變化函數(shù)名稱入手,盡量化
2024-12-05 01:55
【摘要】【優(yōu)化指導】2021年高中數(shù)學二倍角的正弦、余弦、正切公式學業(yè)達標測試新人教A版必修41.sin15°sin75°的值為()B.32D.34解析:sin15°sin75°=sin15°cos15°=12sin30°
2024-12-09 03:40
【摘要】 第2課時 兩角和與差的正弦、余弦、正切公式(二) 兩角和與差的正切公式 名稱 公式 簡記符號 使用條件 兩角和 的正切 tan(α+β)= T(α+β) α,β,...
2025-04-03 03:46
【摘要】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式二倍角的正弦、余弦、正切公式1.會從兩角和的正弦、余弦、正切公式導出二倍角的正弦、余弦、正切公式.(重點)2.能熟練運用二倍角的公式進行簡單的恒等變換,并能靈活地將公式變形運用.(重點、難點)二倍角公式做一做(1)若sinα
2024-12-04 20:24
【摘要】數(shù)學:“兩角差的余弦公式”教學設(shè)計一、教學內(nèi)容解析三角恒等變換處于三角函數(shù)與數(shù)學變換的結(jié)合點和交匯點上,是前面所學三角函數(shù)知識的繼續(xù)與發(fā)展,是培養(yǎng)學生推理能力和運算能力的重要素材.兩角差的余弦公式是《三角恒等變換》這一章的基礎(chǔ)和出發(fā)點,公式的發(fā)現(xiàn)和證明是本節(jié)課的重點,也是難點.由于和與差內(nèi)在的聯(lián)系性與統(tǒng)一性,我們可以
2024-11-18 21:26
【摘要】兩角和與差的正弦、余弦、正切公式:)(的余弦公式差兩角和)()(???C??????sinsincoscos)cos(???公式的用途:對于α,β,只要知道其正弦或余弦,就可以求出差角(或和角)的余弦值.復習回顧:和(差)角的余弦公式?問題探討)()(???S??????
2025-06-05 22:21
【摘要】兩角和與差的余弦公式【學習目標】1、理解向量法推導兩角和與差的余弦公式,并能初步運用解決具體問題;2、應用公C)(???式,求三角函數(shù)值.3、培養(yǎng)探索和創(chuàng)新的能力和意見.【學習重點難點】向量法推導兩角和與差的余弦公式【學習過程】(一)預習指導探究cos(α+β)≠cosα+cosβ
2024-11-20 01:05
【摘要】二倍角的正弦、余弦、正切公式知識點及角度難易度及題號基礎(chǔ)中檔稍難化簡求值問題1、2、4、6給值(式)求值問題57、8、9綜合問題310、11121.2-sin22+cos4的值是()A.sin2B.-cos2C.3cos2D.-
2024-12-05 06:46
【摘要】二倍角的正弦、余弦、正切公式1.sin15°sin75°的值為()B.32D.34解析:sin15°sin75°=sin15°cos15°=12sin30°=14.答案:C2.sin4π12-cos4π12等
【摘要】第五節(jié)兩角和與差的正弦、余弦和正切公式1、兩角和與差的正弦、余弦和正切公式C(a-b):cos(a-b)=_________________________;C(a+b):cos(a+b)=_________________________;S(a+b):sin(a+b)=_________________________;S(a-b)
2024-11-12 01:26
【摘要】學案5兩角和與差的正弦、余弦、正切考綱解讀考綱解讀考向預測考向預測考點突破考點突破即時鞏固即時鞏固規(guī)律探究規(guī)律探究課前熱身課前熱身真題再現(xiàn)真題再現(xiàn)誤區(qū)警示誤區(qū)警示考點考點一一考點考點二二課后拔高課后拔高考點考點三三返回考綱解讀考綱解讀返回考向預測考向預測返回課前熱身課前熱身返回返
2025-02-21 10:44
【摘要】3.兩角和與差的正切你能根據(jù)正切函數(shù)與正弦、余弦函數(shù)的關(guān)系,從C(α±β)、S(α±β)出發(fā),推導出用任意角α,β的正切表示tan(α+β)、tan(α-β)的公式嗎?1.公式T(α-β)是_____________________________________
2024-12-05 10:15
【摘要】課題:兩角和與差的正切(2)班級:姓名:學號:第學習小組【學習目標】,化簡及證明三角恒等式;。【課前預習】1、若??tantan?,是方程0382???xx的兩根,且??,為銳角,則??)cos(??2、若????
【摘要】課題:兩角和與差的余弦班級:姓名:學號:第學習小組【學習目標】,體會向量與三角函數(shù)之間的關(guān)系;、求值、證明【課前預習】1.已知向量),(=),(=221,1yxbyxa,夾角為?,則?ba??==2.
【摘要】[答案](1)2-64(2)6-24(3)sinα[解析](1)cos105°=cos(60°+45°)=cos60°cos45°-sin60°sin45°=12·2
2024-11-09 01:26