freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理教案最終版(存儲(chǔ)版)

  

【正文】 的實(shí)際問(wèn)題。在教法上,根據(jù)教材的內(nèi)容和編排的特點(diǎn),為更有效的突出重點(diǎn),突破難點(diǎn),教學(xué)中采用探究式課堂教學(xué)模式,首先從學(xué)生熟悉的銳角三角形情形入手,設(shè)計(jì)恰當(dāng)?shù)膯?wèn)題情境,將新知識(shí)與學(xué)生已有的知識(shí)建立起密切的聯(lián)系,通過(guò)學(xué)生自己的親身體驗(yàn),使學(xué)生經(jīng)歷正弦定理的發(fā)現(xiàn)過(guò)程,激發(fā)學(xué)生的求知欲,調(diào)動(dòng)學(xué)生主動(dòng)參與的積極性,引導(dǎo)學(xué)生嘗試運(yùn)用新知識(shí)解決新問(wèn)題,即在教學(xué)過(guò)程中,讓學(xué)生的思維由問(wèn)題開(kāi)始,通過(guò)猜想的得出、猜想的探究、定理的推導(dǎo)等環(huán)節(jié)逐步得到深化。上課一開(kāi)始,我先提出問(wèn)題:工人師傅的一個(gè)三角形模型壞了,只剩下如圖所示的部分,AB的長(zhǎng)為1m,但他不知道AC和BC的長(zhǎng)是多少而無(wú)法去截料,你能告訴師傅這兩邊的長(zhǎng)度嗎? 教師:請(qǐng)大家思考,看看能否用過(guò)去所學(xué)過(guò)的知識(shí)解決這個(gè)問(wèn)題?(約2分鐘思考后學(xué)生代表發(fā)言)學(xué)生活動(dòng)一:(教師提示)把這個(gè)實(shí)際問(wèn)題抽象為數(shù)學(xué)模型——那就是“已知三角形中的兩角及夾邊,求另外兩邊的長(zhǎng)”,本題是通過(guò)三角形中已知的邊和角來(lái)求未知的邊和角的這個(gè)過(guò)程,我們把它習(xí)慣上叫解三角形,要求邊的長(zhǎng)度,過(guò)去的做法就是把未知的邊必須要放在直角三角形中,利用勾股定理或三角函數(shù)進(jìn)行求解,即本題的思路是:“把一般三角形轉(zhuǎn)化為直角三角形”,也就是要“作高”。隨堂訓(xùn)練學(xué)生:獨(dú)立完成后匯報(bào)結(jié)果或快速搶答教師:上述幾道題目只是初步的展現(xiàn)了正弦定理的應(yīng)用,其實(shí)正弦定理的應(yīng)用相當(dāng)廣泛,那么它到底可以解決什么問(wèn)題呢,這里我送大家四句話:“近測(cè)高塔遠(yuǎn)看山,量天度海只等閑;古有九章勾股法,今看三角正余弦.”以這四句話把正弦定理的廣泛應(yīng)用推向高潮)課堂小結(jié):知識(shí)方面:正弦定理:其他方面:過(guò)程與方法:發(fā)現(xiàn)推廣猜想驗(yàn)證證明(這是一種常用的科學(xué)研究問(wèn)題的思路與方法,希望同學(xué)們?cè)诮窈蟮膶W(xué)習(xí)中一定要注意這樣的一個(gè)過(guò)程)數(shù)學(xué)思想:轉(zhuǎn)化與化歸、分類(lèi)討論、從特殊到一般作業(yè)布置: ①書(shū)面作業(yè):P52②查找并閱讀“正弦定理”的其他證明方法(比如“面積法”、“向量法”等)③思考、探究:若將隨堂訓(xùn)練中的已知條件改為以下幾種情況,結(jié)果如何?板書(shū)設(shè)計(jì):定理:探索:證明:應(yīng)用:檢測(cè)評(píng)估:第五篇:《正弦定理》教案《正弦定理》授課教案湖南師范大學(xué) 數(shù)計(jì)院 數(shù)學(xué)一班 李雪教材:人民教育出版社高中數(shù)學(xué)必修五第一章第一節(jié)學(xué)生:高一年級(jí)學(xué)生教學(xué)課時(shí):8分鐘一、教材分析:《正弦定理》是人教版教材必修五第一章《解三角形》的第一節(jié)內(nèi)容,也是三角形理論中的一個(gè)重要內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系,是解三角形重要手段之一,也是解決實(shí)際生活中許多測(cè)量問(wèn)題的工具。四、教學(xué)過(guò)程 :在直角三角形中,證明過(guò)程: abc==成立,對(duì)其進(jìn)行證明。 正弦定理abc==及其證明 sinAsinBsinC216。三、教學(xué)重點(diǎn)、難點(diǎn):重點(diǎn):正弦定理的內(nèi)容及其證明。學(xué)生活動(dòng)二:驗(yàn)證教師(提示):要出現(xiàn)sinA、sinB的值必須把A、B放在直角三角形中即就是要作高(可利用誘導(dǎo)公式將在鈍角三角形中是否成立轉(zhuǎn)化為)學(xué)生:學(xué)生可分小組進(jìn)行完成,最終可由各小組組長(zhǎng)匯報(bào)本小組的思路和做法。五、教學(xué)工具多媒體課件六、教學(xué)過(guò)程 創(chuàng)設(shè)情境,導(dǎo)入新課興趣是最好的老師。難點(diǎn):①正弦定理的發(fā)現(xiàn)與證明過(guò)程;②已知兩邊以及其中一邊的對(duì)角解三角形時(shí)解的個(gè)數(shù)的判斷。)=24176。)=105176。B2≈150176。)=85176。(4)A=20,B=28,A=120176。(40176。時(shí), C =180176。 c=≈(cm). [方法引導(dǎo)](1)此類(lèi)問(wèn)題結(jié)果為唯一解,學(xué)生較易掌握,如果已知兩角和兩角所夾的邊,也是先利用內(nèi)角和180176。+,可得. ∴(形式1).綜上所述,正弦定理對(duì)于銳角三角形、直角三角形、鈍角三角形均成立.師在證明了正弦定理之后,我們來(lái)進(jìn)一步學(xué)習(xí)正弦定理的應(yīng)用. [教師精講](1)正弦定理說(shuō)明同一三角形中,邊與其對(duì)角的正弦成正比,且比例系數(shù)為同一正數(shù),即存在正數(shù)k使A=ksinA,B=ksinB,C=ksinC;(2)等價(jià)于(形式2).我們通過(guò)觀察正弦定理的形式2不難得到,利用正弦定理,可以解決以下兩類(lèi)有關(guān)三角形問(wèn)題.①已知三角形的任意兩角及其中一邊可以求其他邊,,故第三角確定,三角形唯一,解唯一,相對(duì)容易,課本P4的例1就屬于此類(lèi)問(wèn)題. ②已知三角形的任意兩邊與其中一邊的對(duì)角可以求其他角的正弦值,如.此類(lèi)問(wèn)題變化較多,我們?cè)诮忸}時(shí)要分清題目所給的條件.一般地,已知三角形的某些邊和角,求其他的邊和角的過(guò)程叫作解三角形.師接下來(lái),我們通過(guò)例題評(píng)析來(lái)進(jìn)一步體會(huì)與總結(jié).[例題剖析]【例1】在△ABC中,已知A=176。+jA). ∴AsinC=CsinA. ∴.另外,過(guò)點(diǎn)C作與垂直的單位向量j,則j與的夾角為90176。B=|A||B|Cosθ,其中θ為兩向量的夾角.師回答得很好,但是向量數(shù)量積涉及的是余弦關(guān)系而非正弦關(guān)系,這兩者之間能否轉(zhuǎn)化呢?生 可以通過(guò)三角函數(shù)的誘導(dǎo)公式sinθ=Cos(90176。三、例題解析【例1】?jī)?yōu)化P101例1分析:直接代入正弦定理中運(yùn)算即可ab=sinAsinBcsinA10180。【師】:如果△ABC是鈍角三角形呢?又怎么樣得到正弦定理的證明呢?不妨假設(shè)∠A是鈍rr角,那么同樣道理如果我們做AC垂線上的一個(gè)單位向量j,把向量j和上面那個(gè)式uuuruuuruuur子AB+BC=AC的兩邊同時(shí)做數(shù)量積運(yùn)算就可以得到ruuurruuurruuur00jABcos(C90)+jBCcos(90+C)=jACcos900,化簡(jiǎn)即可得到csinA=asinC,即acbc==,同理可以得到。這個(gè)實(shí)際問(wèn)題說(shuō)明了三角形的邊與角有緊密的聯(lián)系,邊和角甚至可以互相轉(zhuǎn)化,這節(jié)課我們就要從正弦這個(gè)側(cè)面來(lái)研究三角形邊角的關(guān)系即正弦定理。o,o,第二篇:正弦定理教
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1