【摘要】基本不等式經(jīng)典習(xí)題1、已知x,y為正數(shù),則的最大值為▲2.實數(shù)、、滿足,則的最大值為▲.3、已知正實數(shù)x,y滿足,則xy的取值范圍為▲.【答案】[1,]4、設(shè)x,y是正實數(shù),且x+y=1,則的最小值為▲455.(浙江理16)設(shè)為實數(shù),若則的最大值是.6、(2010
2025-06-24 16:38
【摘要】第一篇:不等式3(基本不等式應(yīng)用與證明) 學(xué)習(xí)要求大成培訓(xùn)教案(不等式3基本不等式證明與應(yīng)用)基本不等式 ,,并掌握基本不等式中取等號的條件是:.算術(shù)平均數(shù):幾何平均數(shù) 2.設(shè)a≥0,b≥0則a...
2024-10-28 23:35
【摘要】第三節(jié)基本不等式及其應(yīng)用基礎(chǔ)梳理1.基本不等式.2abab?(1)基本不等式成立的條件:________.(2)等號成立的條件:當(dāng)且僅當(dāng)________時取等號.a(chǎn)≥0,b≥0a=b2.幾個重要的不等式(1)a2+b2≥________(a,b∈R).(2)baab??___
2024-11-12 16:44
【摘要】新希望培訓(xùn)學(xué)校MATHMATICS基本不等式一.基本不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”);若,則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時
2025-03-24 03:55
【摘要】第7講基本不等式及其性質(zhì)江蘇省普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)教學(xué)要求:掌握基本不等式≤(a≥0,b≥0);能用基本不等式證明簡單不等式(指只用一次基本不等式即可解決的問題);能用基本不等式求解簡單的最大(?。┲祮栴}(指只用一次基本不等式即可解決的問題)。2020江蘇高考數(shù)學(xué)科考試說明:c級
2024-11-11 02:53
【摘要】主講老師:習(xí)題講評復(fù)習(xí)幾個重要的不等式:復(fù)習(xí)幾個重要的不等式:)(.2,,.122”時取“當(dāng)且僅當(dāng)那么如果?????baabbaRba復(fù)習(xí)幾個重要的不等式:)(.2,,.122”時取“當(dāng)且僅當(dāng)那么如果?????ba
2024-11-09 04:45
【摘要】第四節(jié)基本不等式基礎(chǔ)梳理2()2ab?1.基本不等式2abab??(1)基本不等式成立的條件:.(2)等號成立的條件:當(dāng)且僅當(dāng)時取等號.2.幾個重要的不等式(1)a2+b2≥(a,b∈R).(2)≥(a,b同號).(3)a
2024-11-12 01:26
【摘要】第一篇:基本不等式的證明教案 課題:基本不等式的證明(1) 斜橋中學(xué)肖劍 一、教材分析 不等式是高中的重點也是難點,而本節(jié)內(nèi)容又是該章的重中之重,是《考試說明》中八個C級考點之一。基本不等式的...
2024-10-27 19:03
【摘要】第一篇:基本不等式教學(xué)反思200711 “基本不等式”教學(xué)反思 周開芹 根據(jù)新課標(biāo)的要求,本節(jié)的重點是應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索基本不等式的證明過程,難點是用基本不等式求...
2024-10-25 17:23
【摘要】......新課標(biāo)人教A版高中數(shù)學(xué)必修五典題精講()典題精講例1(1)已知0<x<,求函數(shù)y=x(1-3x)的最大值;(2)求函數(shù)y=x+的值域.思路分析:(1)由極值定理,可知需構(gòu)造某個和為定值,可考慮把括號內(nèi)外x的系數(shù)變
2025-03-25 00:14
【摘要】基本不等式:授課人:祁玉瑞授課類型:新授課一、知識與技能:使學(xué)生了解基本不等式的代數(shù)、幾何背景,學(xué)會推導(dǎo)并掌握基本不等式,理解這個基本不等式的幾何意義,并掌握定理中的不等號“≥”取等號的條件是:當(dāng)且僅當(dāng)這兩個數(shù)相等;學(xué)會應(yīng)用基本不等式解決簡單的數(shù)學(xué)問題。過程與方法:通過探索基本不等式的過程,讓學(xué)生體會研究數(shù)學(xué)問題的基本思想方法,學(xué)會學(xué)習(xí),學(xué)會探究。情感態(tài)度與價值
2025-04-17 02:35
【摘要】1基本不等式公主嶺一中王春芳一、教學(xué)過程:(一)創(chuàng)設(shè)情景,提出問題;右圖是在北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo),會標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去像一個風(fēng)車,代表中國人民熱情好客。(1)你能通過下面的模擬圖找出一些相等關(guān)系或不等關(guān)系嗎?
2024-11-23 15:27
【摘要】第一篇:專題:基本不等式評課材料 《專題:基本不等式》一課的點評樺川縣第一中學(xué):李春林 在剛剛落幕的“百花獎”教學(xué)競賽中,孫忠保老師的《基本不等式》一課,給我留下了深刻的印象,現(xiàn)就本課加以點評: ...
2024-10-24 10:17
【摘要】基本不等式知識點總結(jié)向量不等式:【注意】:同向或有;反向或有;不共線.(這些和實數(shù)集中類似)代數(shù)不等式:同號或有;異號或有.絕對值不等式:雙向不等式:(左邊當(dāng)時取得等號,右邊當(dāng)時取得等號.)放縮不等式:①,則.【說明】:(,糖水的濃度問題).【拓展】:.②,,則;③,;④,.
2025-06-23 17:20
【摘要】......雙基自測1.(人教A版教材習(xí)題改編)函數(shù)y=x+(x>0)的值域為( ).A.(-∞,-2]∪[2,+∞) B.(0,+∞)C.[2,+∞) D.(2,+∞)2.下列不等式:①a2+1>2a;②≤2;③
2025-06-23 02:15