【摘要】解析幾何基礎(chǔ)100題一、選擇題:1.若雙曲線的離心率為,則兩條漸近線的方程為ABCD解答:C易錯原因:審題不認真,混淆雙曲線標準方程中的a和題目中方程的a的意義。2.橢圓的短軸長為2,長軸是短軸的2倍,則橢圓的中心到其準線的距離是ABCD解答:D易錯原因:短軸長誤認為是3.過定點(1,
2025-08-05 16:48
【摘要】平面解析幾何中的中心對稱和軸對稱龍碧霞一、中心對稱定義:把一個圖形繞某個點旋轉(zhuǎn)180后能與另一個圖形重合。這兩個圖形關(guān)于這個點對稱。這個點叫著對稱中心。性質(zhì):關(guān)于某個點成中心對稱的兩個圖形。對稱點的連線都經(jīng)過對稱中心。且被對稱中心平分。一般有三種情況。(1)點關(guān)于點對稱。點P(x,y)關(guān)于點M(a,b)對稱的點Q的坐標是Q(2a-x,2b-y)。(由中點坐標
2025-07-18 03:35
【摘要】解析幾何基礎(chǔ)知識若直線l1和l2有斜截式方程l1:y=k1x+b1,l2:y=k2x+b2,則:(1)直線l1∥l2的充要條件是:k1=k2且b1≠b2(2)直線l1⊥l2的充要條件是:k1·k2=-12.三種距離(1)兩點間的距離平面上的兩點P1(x1,y1),P2(x2,y2)間的距離公式|P1P2|=.特別地,原點(0,0)與任意一點P(x,y)的距離|
2025-06-18 19:34
【摘要】第七章空間解析幾何與向量代數(shù)第一節(jié)空間直角坐標系教學目的:將學生的思維由平面引導到空間,使學生明確學習空間解析幾何的意義和目的。教學重點:教學難點:空間思想的建立教學內(nèi)容:一、空間直角坐標系1.將數(shù)軸(一維)、平面直角坐標系(二維)進一步推廣建立空間直角坐標系(三維)如圖7-1,其符合右手規(guī)則。即以右手握住軸,當右手的四個手指從正向軸以角
2024-10-04 17:11
【摘要】解析幾何解題方法集錦 俗話說:“知己知彼,才能百戰(zhàn)百勝”,這一策略,同樣可以用于高考復習之中。我們不僅要不斷研究教學大綱、考試說明和教材,而且還必須研究歷年高考試題,從中尋找規(guī)律,這樣才有可能以不變應萬變,才有可能在高考中取得優(yōu)異成績??v觀近幾年的高考解析幾何試題,可以發(fā)現(xiàn)有這樣的規(guī)律:小題靈活,大題穩(wěn)定。一、解決解析幾何問題的幾條原則1.重視“數(shù)形結(jié)合”的數(shù)學思想2.注重平面幾
2024-10-04 16:31
【摘要】28NO.《微積分》教案第十章向量代數(shù)與空間解析幾何§空間直角坐標系一、空間點的直角坐標(1)坐標系:公共原點,三條互相垂直的數(shù)軸軸(橫軸),軸(縱軸),軸(豎軸),符合右手規(guī)則。ⅠⅡⅢⅣⅧⅤⅥ點叫做坐標原點,數(shù)軸,,統(tǒng)稱為坐標軸.,,,每一部分稱為一個卦
2024-10-04 14:46
【摘要】1.直線的傾斜角與斜率:(1)直線的傾斜角:在平面直角坐標系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向旋轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為叫做直線的傾斜角.傾斜角,斜率不存在.(2)直線的斜率:.(、).2.直線方程的五種形式:(1)點斜式:(直線過點,且斜率為).注:當直線斜率不存在時,不能用點斜式表示,此時方程為.(2)斜截式:(b
2025-06-22 16:55
【摘要】解析幾何大題的解題技巧(只包括橢圓和拋物線)。一、設(shè)點或直線做題一般都需要設(shè)點的坐標或直線方程,其中點或直線的設(shè)法有很多種。直線與曲線的兩個交點一般可以設(shè)為(x1,y1),(x2,y2),等。對于橢圓上的唯一的動,還可以設(shè)為,在拋物線上的點,也可以設(shè)為。還要注意的是,很多點的坐標都是設(shè)而不求的。對于一條直線,如果過定點(x0,y0)并且不與y軸平行,可以設(shè)點斜式y(tǒng)-y0=k
2025-08-09 15:40
【摘要】七夕,古今詩人慣詠星月與悲情。吾生雖晚,世態(tài)炎涼卻已看透矣。情也成空,且作“揮手袖底風”罷。是夜,窗外風雨如晦,吾獨坐陋室,聽一曲《塵緣》,合成詩韻一首,覺放諸古今,亦獨有風韻也。乃書于紙上。畢而臥。凄然入夢。乙酉年七月初七。-----嘯之記。解析幾何中的基本公式1、兩點間距離:若,則特別地:軸,則
2025-01-14 20:51
【摘要】平面解析幾何階段質(zhì)量檢測(時間120分鐘,滿分150分)第Ⅰ卷 (選擇題,共40分)一、選擇題(本大題共8題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的)1.拋物線y2=ax(a≠0)的焦點到其準線的距離是( )A. B.C.|a|
2025-04-04 04:27
【摘要】第二章《解析幾何初步》檢測試題一、選擇題(本大題共12小題,每小題5分,共60分)1.過點(1,0)且與直線x-2y-2=0平行的直線方程是()=0+1=0+y-2=0+2y-1=02.已知直線mx+ny+1=0平行于直線4x+3y+5=0,且在y軸上的截距為,則m,n的值分別為(
2025-03-25 02:03
【摘要】......求離心率的取值范圍策略圓錐曲線共同的性質(zhì):圓錐曲線上的點到一個定點F和到一條定直線L(F不在定直線L上)的距離之比是一個常數(shù)e。橢圓的離心率,雙曲線的離心率,拋物線的離心率。求橢圓與雙曲線離心率的范圍是圓錐曲線這一章的重點題型。下面從幾個方面淺談如何確定橢圓、雙曲線離心率e的范圍。一、利用曲線的范圍,建立不等關(guān)系
2025-03-25 05:12
【摘要】問題引入xyOM(2,1)y=5x=745如何求呢?點到直線的距離1、點到直線距離定義定義:一般的,設(shè)點M(x0,y0)為直線l:Ax+By+C=0外一點,過M向AB引垂線,垂足為D,把線段MD的長d叫做點M到直線AB的距離。xylαoM(x0,
2025-08-05 18:21
【摘要】解析幾何一、選擇題1.已知兩點A(-3,),B(,-1),則直線AB的斜率是( )A. B.-C. D.-解析:斜率k==-,故選D.答案:D2.已知直線l:ax+y-2-a=0在x軸和y軸上的截距相等,則a的值是( )A.1 B.-1C.-2或-1 D.-2或1解析:①當a=0時,y=2不合題意.②a≠0,x=0時
2025-08-05 16:26
【摘要】第七章空間解析幾何與向量代數(shù)習題 (一)選擇題1.已知A(1,0,2),B(1,2,1)是空間兩點,向量的模是:()A)B)C)6D)92.設(shè)a={1,-1,3},b={2,-1,2},求c=3a-2b是:()A){-1,1,5}.B){-1,-1,5
2025-08-05 16:46