freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高三數(shù)學(xué)第二輪專題復(fù)習(xí)系列(8)---圓錐曲線(存儲版)

2025-09-04 18:37上一頁面

下一頁面
  

【正文】 故直線l的方程為y=x-1,△AMN的最大面積為8.【例19】 已知雙曲線C:2x2-y2=2與點(diǎn)P(1,2)。解:(1)∵ ∴=0∴ 得∴P點(diǎn)的軌跡方程為(2)考慮方程組 消去y,得(1-3k2)x2-6kmx-3m2-3=0(*)顯然1-3k2≠0 △=(6km)2-4(-3m2-3)=12(m2+1)-3k20設(shè)x1,x2為方程*的兩根,則 故AB中點(diǎn)M的坐標(biāo)為(,)∴線段AB的垂直平分線方程為:將D(0,-1)坐標(biāo)代入,化簡得:4m=3k2-1故m、k滿足,消去k2得:m2-4m0解得:m0或m4又∵4m=3k2-1-1 ∴m-故m.【直線與圓錐曲線練習(xí)】一、選擇題1.斜率為1的直線l與橢圓+y2=1相交于A、B兩點(diǎn),則|AB|的最大值為( ) B. C. D. 2.拋物線y=ax2與直線y=kx+b(k≠0)交于A、B兩點(diǎn),且此兩點(diǎn)的橫坐標(biāo)分別為x1,x2,直線與x軸交點(diǎn)的橫坐標(biāo)是x3,則恒有( )=x1+x2 =x1x3+x2x3+x2+x3=0 +x2x3+x3x1=0二、填空題3.已知兩點(diǎn)M(1,)、N(-4,-),給出下列曲線方程:①4x+2y-1=0,②x2+y2=3,③+y2=1,④-y2=1,在曲線上存在點(diǎn)P滿足|MP|=|NP|的所有曲線方程是_________.4.正方形ABCD的邊AB在直線y=x+4上,C、D兩點(diǎn)在拋物線y2=x上,則正方形ABCD的面積為_________.5.在拋物線y2=16x內(nèi),通過點(diǎn)(2,1)且在此點(diǎn)被平分的弦所在直線的方程是_________.三、解答題6.已知拋物線y2=2px(p>0),過動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,且|AB|≤2p.(1)求a的取值范圍.(2)若線段AB的垂直平分線交x軸于點(diǎn)N,求△NAB面積的最大值.7.已知中心在原點(diǎn),頂點(diǎn)AA2在x軸上,離心率e=的雙曲線過點(diǎn)P(6,6).(1)求雙曲線方程.(2)動(dòng)直線l經(jīng)過△A1PA2的重心G,與雙曲線交于不同的兩點(diǎn)M、N,問:是否存在直線l,使G平分線段MN,證明你的結(jié)論.8.已知雙曲線C的兩條漸近線都過原點(diǎn),且都以點(diǎn)A(,0)為圓心,1為半徑的圓相切,雙曲線的一個(gè)頂點(diǎn)A1與A點(diǎn)關(guān)于直線y=x對稱.(1)求雙曲線C的方程.(2)設(shè)直線l過點(diǎn)A,斜率為k,當(dāng)0<k<1時(shí),雙曲線C的上支上有且僅有一點(diǎn)B到直線l的距離為,試求k的值及此時(shí)B點(diǎn)的坐標(biāo).直線與圓錐曲線參考答案一、:弦長|AB|=≤.答案:C:解方程組,得ax2-kx-b=0,可知x1+x2=,x1x2=-,x3=-,代入驗(yàn)證即可.答案:B二、:點(diǎn)P在線段MN的垂直平分線上,判斷MN的垂直平分線于所給曲線是否存在交點(diǎn).答案:②③④:設(shè)C、D所在直線方程為y=x+b,代入y2=x,利用弦長公式可求出|CD|的長,利用|CD|的長等于兩平行直線y=x+4與y=x+b間的距離,求出b的值,再代入求出|CD|的長.答案:18或50:設(shè)所求直線與y2=16x相交于點(diǎn)A、B,且A(x1,y1),B(x2,y2),代入拋物線方程得y12=16x1,y22=16x2,兩式相減得,(y1+y2)(y1-y2)=16(x1-x2).即kAB=8.故所求直線方程為y=8x-15.答案:8x-y-15=0三、:(1)設(shè)直線l的方程為:y=x-a,代入拋物線方程得(x-a)2=2px,即x2-2(a+p)x+a2=0∴|AB|=≤2p.∴4ap+2p2≤p2,即4ap≤-p2又∵p>0,∴a≤-.(2)設(shè)A(x1,y1)、B(x2,y2),AB的中點(diǎn) C(x,y),由(1)知,y1=x1-a,y2=x2-a,x1+x2=2a+2p,則有x==p.∴線段AB的垂直平分線的方程為y-p=-(x-a-p),從而N點(diǎn)坐標(biāo)為(a+2p,0)點(diǎn)N到AB的距離為從而S△NAB=當(dāng)a有最大值-時(shí),S有最大值為p2.:(1)如圖,設(shè)雙曲線方程為=,解得a2=9,b2=12.所以所求雙曲線方程為=1.(2)P、AA2的坐標(biāo)依次為(6,6)、(3,0)、(-3,0),∴其重心G的坐標(biāo)為(2,2)假設(shè)存在直線l,使G(2,2)平分線段MN,設(shè)M(x1,y1),N(x2,y2).則有,∴kl=∴l(xiāng)的方程為y= (x-2)+2,由,消去y,整理得x2-4x+28=0.∵Δ=16-428<0,∴所求直線l不存在.:(1)設(shè)雙曲線的漸近線為y=kx,由d==1,解得k=177。,或k=,或k不存在時(shí),l與C只有一個(gè)交點(diǎn);當(dāng)<k<,或-<k<,或k<-時(shí),l與C有兩個(gè)交點(diǎn);當(dāng)k>時(shí),l與C沒有交點(diǎn).(2)假設(shè)以Q為中點(diǎn)的弦存在,設(shè)為AB,且A(x1,y1),B(x2,y2),則2x12-y12=2,2x22-y22=2兩式相減得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2)又∵x1+x2=2,y1+y2=2∴2(x1-x2)=y1-y1即kAB==2但漸近線斜率為177。n= ②由①、②式得m=,n=或m=,n=故橢圓方程為+y2=1或x2+y2=1.【例18】 如圖所示,拋物線y2=4x的頂點(diǎn)為O,點(diǎn)A的坐標(biāo)為(5,0),傾斜角為的直線l與線段OA相交(不經(jīng)過點(diǎn)O或點(diǎn)A)且交拋物線于M、N兩點(diǎn),求△AMN面積最大時(shí)直線l的方程,并求△AMN的最大面積.解:由題意,可設(shè)l的方程為y=x+m,-5<m<0.由方程組,消去y,得x2+(2m-4)x+m2=0……………①∵直線l與拋物線有兩個(gè)不同交點(diǎn)M、N,∴方程①的判別式Δ=(2m-4)2-4m2=16(1-m)>0,解得m<1,又-5<m<0,∴m的范圍為(-5,0)設(shè)M(x1,y1),N(x2,y2)則x1+x2=4-2m,x1時(shí),方程(*)有一個(gè)根,l與C有一個(gè)交點(diǎn)(ⅱ)當(dāng)2-k2≠0,即k≠177。解:(1)∵ ∴=0∴ 得∴P點(diǎn)的軌跡方程為(2)考慮方程組 消去y,得(1-3k2)x2-6kmx-3m2-3=0(*)顯然1-3k2≠0 △=(6km)2-4(-3m2-3)=12(m2+1)-3k20設(shè)x1,x2為方程*的兩根,則 故AB中點(diǎn)M的坐標(biāo)為(,)∴線段AB的垂直平分線方程為:將D(0,-1)坐標(biāo)代入,化簡得:4m=3k2-1故m、k滿足,消去k2得:m2-4m0解得:m0或m4又∵4m=3k2-1-1 ∴m-故m.【直線與圓錐曲線練習(xí)】一、選擇題1.斜率為1的直線l與橢圓+y2=1相交于A、B兩點(diǎn),則|AB|的最大值為( ) B. C. D. 2.拋物線y=ax2與直線y=kx+b(k≠0)交于A、B兩點(diǎn),且此兩點(diǎn)的橫坐標(biāo)分別為x1,x2,直線與x軸交點(diǎn)的橫坐標(biāo)是x3,則恒有( )=x1+x2 =x1x3+x2x3 +x2+x3=0 +x2x3+x3x1=0二、填空題3.已知兩點(diǎn)M(1,)、N(-4,-),給出下列曲線方程:①4x+2y-1=0,②x2+y2=3,③+y2=1,④-y2=1,在曲線上存在點(diǎn)P滿足|MP|=|NP|的所有曲線方程是_________.4.正方形ABCD的邊AB在直線y=x+4上,C、D兩點(diǎn)在拋物線y2=x上,則正方形ABCD的面積為_________.5.在拋物線y2=16x內(nèi),通過點(diǎn)(2,1)且在此點(diǎn)被平分的弦所在直線的方程是_________.三、解答題6.已知拋物線y2=2px(p>0),過動(dòng)點(diǎn)M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點(diǎn)A、B,且|AB|≤2p.(1)求a的取值范圍.(2)若線段AB的垂直平分線交x軸于點(diǎn)N,求△NAB面積的最大值.7.已知中心在原點(diǎn),頂點(diǎn)AA2在x軸上,離心率e=的雙曲線過點(diǎn)P(6,6).(1)求雙曲線方程.(2)動(dòng)直線l經(jīng)過△A1PA2的重心G,與雙曲線交于不同的兩點(diǎn)M、N,問:是否存在直線l,使G平分線段MN,證明你的結(jié)論.8.已知雙曲線C的兩條漸近線都過原點(diǎn),且都以點(diǎn)A(,0)為圓心,1為半徑的圓相切,雙曲線的一個(gè)頂點(diǎn)A1與A點(diǎn)關(guān)于直線y=x對稱. (1)求雙曲線C的方程.(2)設(shè)直線l過點(diǎn)A,斜率為k,當(dāng)0<k<1時(shí),雙曲線C的上支上有且僅有一點(diǎn)B到直線l的距離為,試求k的值及此時(shí)B點(diǎn)的坐標(biāo).直線與圓錐曲線參考答案一、:弦長|AB|=≤.答案:C:解方程組,得ax2-kx-b=0,可知x1+x2=,x1x2=-,x3=-,:B二、:點(diǎn)P在線段MN的垂直平分線上,判斷MN的垂直平分線于所給曲線是否存在交點(diǎn).答案:②③④:設(shè)C、D所在直線方程為y=x+b,代入y2=x,利用弦長公式可求出|CD|的長,利用|CD|的長等于兩平行直線y=x+4與y=x+b間的距離,求出b的值,再代入求出|CD|:18或50:設(shè)所求直線與y2=16x相交于點(diǎn)A、B,且A(x1,y1),B(x2,y2),代入拋物線方程得y12=16x1,y22=16x2,兩式相減得,(y1+y2)(y1-y2)=16(x1-x2).即kAB=8.故所求直線方程為y=8x-:8x-y-15=0三、:(1)設(shè)直線l的方程為:y=x-a,代入拋物線方程得(x-a)2=2px,即x2-2(a+p)x+a2=0∴|AB|=≤2p.∴4ap+2p2≤p2,即4ap≤-p2又∵p>0,∴a≤-.(2)設(shè)A(x1,y1)、B(x2,y2),AB的中點(diǎn) C(x,y),由(1)知,y1=x1-a,y2=x2-a,x1+x2=2a+2p,則有x==p.∴線段AB的垂直平分線的方程為y-p=-(x-a-p),從而N點(diǎn)坐標(biāo)為(a+2p,0)點(diǎn)N到AB的距離為從而S△NAB=當(dāng)a有最大值-時(shí),S有最大值為p2.:(1)如圖,設(shè)雙曲線方程為=,解得a2=9,b2=12.所以所求雙曲線方程為=1.(2)P、AA2的坐標(biāo)依次為(6,6)、(3,0)、(-3,0),∴其重心G的坐標(biāo)為(2,2)假設(shè)存在直線l,使G(2,2)平分線段MN,設(shè)M(x1,y1),N(x2,y2).則有,∴kl=∴l(xiāng)的方程為y= (x-2)+2,由,消去y,整理得x2-4x+28=0.∵Δ=16-428<0,∴所求直線l不存在.:(1)設(shè)雙曲線的漸近線為y=kx,由d==1,解得k=177。(5+m)(5+m)≤2()3=128.∴S△≤8,當(dāng)且僅當(dāng)2-2m=5+m,即m=-1時(shí)取等號.故直線l的方程為y=x-1,△AMN的最大面積為8.【例3】 已知雙曲線C:2x2-y2=2與點(diǎn)P(1,2)。k2=:直線DE過定點(diǎn),并求出這個(gè)定點(diǎn).解:(1)設(shè)【例8】 已知曲線,直線l過A(a,0)、B(0,-b)兩點(diǎn),原點(diǎn)O到l的距離是(Ⅰ)求雙曲線的方程;(Ⅱ)過點(diǎn)B作直線m交雙曲線于M、N兩點(diǎn),若,求直線m的方程.解:(Ⅰ)依題意, 由原點(diǎn)O到l的距離為,得 又 故所求雙曲線方程為 (Ⅱ)顯然直線m不與x軸垂直,設(shè)m方程為y=kx-1,則點(diǎn)M、N坐標(biāo)()、()是方程組 的解消去y,得 ①依設(shè),由根與系數(shù)關(guān)系,知 == = ∴=-23,k=177。四.對考試大綱的理解高考圓錐曲線試題一般有3題(1個(gè)選擇題, 1個(gè)填空題, 1個(gè)解答題), 共計(jì)22分左右, 考查的知識點(diǎn)約為20個(gè)左右. 其命題一般緊扣課本, 突出重點(diǎn), 全面考查. 選擇題和填空題考查以圓錐曲線的基本概念和性質(zhì)為主, 難度在中等以下,一般較容易得分,解答題常作為數(shù)學(xué)高考中的壓軸題,綜合考查學(xué)生數(shù)形結(jié)合、等價(jià)轉(zhuǎn)換、分類討論、邏輯推理等諸方面的能力,重點(diǎn)考查圓錐曲線中的重要知識點(diǎn), 通過知識的重組與鏈接, 使知識形成網(wǎng)絡(luò), 著重考查直線與圓錐曲線的位置關(guān)系, 往往結(jié)合平面向量進(jìn)行求解,在復(fù)習(xí)應(yīng)充分重視。c+h,k)x=177。當(dāng)D2+E24F<0時(shí),方程不表示任何圖形.點(diǎn)與圓的位置關(guān)系 已知圓心C(a,b),半徑為r,點(diǎn)M的坐標(biāo)為(x0,y0),則|MC|<r點(diǎn)M在圓C內(nèi),|MC|=r點(diǎn)M在圓C上,|MC|>r點(diǎn)M在圓C內(nèi),其中|MC|=.(3)直線和圓的位置關(guān)系①直線和圓有相交、相切、相離三種位置關(guān)系直線與圓相交有兩個(gè)公共點(diǎn)直線與圓相切有一個(gè)公共點(diǎn)直線與圓相離沒有公共點(diǎn)②直線和圓的位置關(guān)系的判定(i)判別式法(ii)利用圓心C(a,b)到直線Ax+By+C=0的距離d=與半徑r的大小關(guān)系來判定.、雙曲線和拋物線橢圓、雙曲線和拋物線的基本知識見下表.曲線性質(zhì)橢 圓
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1