【摘要】《數(shù)值分析》實(shí)驗(yàn)報(bào)告實(shí)驗(yàn)名稱使用matlab編寫數(shù)值計(jì)算程序?qū)嶒?yàn)時(shí)間**姓名**班級(jí)**學(xué)號(hào)**成績(jī)實(shí)驗(yàn)報(bào)告內(nèi)容要求:一、實(shí)驗(yàn)?zāi)康呐c內(nèi)容;二、算法描述(數(shù)學(xué)原理或設(shè)計(jì)思路、計(jì)算公式、計(jì)算步驟);三、程序代碼;四、數(shù)值結(jié)果;五、計(jì)算結(jié)果分析(如初值對(duì)結(jié)果的影響;不同方法的比較
2025-01-06 06:51
【摘要】第3章解線性方程組的數(shù)值解法引言在自然科學(xué)和工程技術(shù)中很多問(wèn)題的解決常常歸結(jié)為解線性代數(shù)方程組。例如電學(xué)中的網(wǎng)絡(luò)問(wèn)題,船體數(shù)學(xué)放樣中建立三次樣條函數(shù)問(wèn)題,用最小二乘法求實(shí)驗(yàn)數(shù)據(jù)的曲線擬合問(wèn)題,解非線性方程組問(wèn)題,用差分法或者有限元法解常微分方程,偏微分方程邊值問(wèn)題等都導(dǎo)致求解線性方程組,而且
2025-05-14 00:21
【摘要】《數(shù)值方法》實(shí)驗(yàn)報(bào)告1數(shù)值微分計(jì)算方法實(shí)驗(yàn)【摘要】數(shù)值微分(numericaldifferentiation)根據(jù)函數(shù)在一些離散點(diǎn)的函數(shù)值,推算它在某點(diǎn)的導(dǎo)數(shù)或高階導(dǎo)數(shù)的近似值的方法。通常用差商代替微商,或者用一個(gè)能夠近似代替該函數(shù)的較簡(jiǎn)單的可微函數(shù)(如多項(xiàng)式或樣條函數(shù)等)的
2025-01-06 06:50
【摘要】第九章常微分方程的數(shù)值解法 在自然科學(xué)的許多領(lǐng)域中,都會(huì)遇到常微分方程的求解問(wèn)題。然而,我們知道,只有少數(shù)十分簡(jiǎn)單的微分方程能夠用初等方法求得它們的解,多數(shù)情形只能利用近似方法求解。在常微分方程課中已經(jīng)講過(guò)的級(jí)數(shù)解法,逐步逼近法等就是近似解法。這些方法可以給出解的近似表達(dá)式,通常稱為近似解析方法。還有一類近似方法稱為數(shù)值方法,它可以給出解在一些離散點(diǎn)上的近似值。利用計(jì)算機(jī)解微分方程主要
2025-08-22 20:43
【摘要】第3節(jié)第二型(對(duì)坐標(biāo)的)曲面積分一.曲面?zhèn)鹊母拍?雙側(cè)曲面:.,.,,nPnP來(lái)的相應(yīng)的法向量也回到原置時(shí)續(xù)變化又回到原來(lái)的位邊界而任意連的不越過(guò)上在當(dāng)點(diǎn)選定一個(gè)記為量作曲面的法向任一點(diǎn)上過(guò)一光滑曲面是設(shè)????.,,,面雙側(cè)曲面也稱為有向曲故曲面的側(cè)取定了法向量即選取了區(qū)分曲面的兩側(cè)量的指
2025-07-25 04:16
【摘要】課程設(shè)計(jì)說(shuō)明書(shū)課程名稱:數(shù)值計(jì)算與算法設(shè)計(jì)課程設(shè)計(jì)題目:導(dǎo)彈追蹤微分方程模型的數(shù)值解法院系:理學(xué)院_專業(yè)班級(jí):_應(yīng)用數(shù)學(xué)2005-2學(xué)號(hào):_200513794_學(xué)生姓名:__儲(chǔ)素霞__指導(dǎo)教師:__許峰___2008年7月11日安徽理工大學(xué)課程
2025-01-16 14:12
【摘要】31數(shù)值分析第七章第七章非線性方程求根一、重點(diǎn)內(nèi)容提要(一)問(wèn)題簡(jiǎn)介求單變量函數(shù)方程()的根是指求(實(shí)數(shù)或復(fù)數(shù)),()的根,其中m為正整數(shù),滿足,則是方程()=1時(shí),稱為單根;當(dāng)m1時(shí),,是方程
2025-06-24 21:25
【摘要】[原創(chuàng)]偏微分方程數(shù)值解法的MATLAB源碼【更新完畢】說(shuō)明:由于偏微分的程序都比較長(zhǎng),比其他的算法稍復(fù)雜一些,所以另開(kāi)一貼,專門上傳偏微分的程序謝謝大家的支持!其他的數(shù)值算法見(jiàn):..//Announce/?BoardID=209&id=82450041、古典顯式格式求解拋物型偏微分方程(一維熱傳導(dǎo)方程)function[Uxt]=PDEPara
2025-06-19 22:12
【摘要】第5章數(shù)值計(jì)算基礎(chǔ)本章目標(biāo)?掌握多項(xiàng)式的構(gòu)造和運(yùn)算方法?掌握解線性方程的方法?能夠使用常用的幾種數(shù)值分析方法進(jìn)行一般的數(shù)值問(wèn)題求解主要內(nèi)容?多項(xiàng)式?線性代數(shù)?數(shù)值分析?函數(shù)極值和零點(diǎn)?插值和擬合多項(xiàng)式?創(chuàng)建多項(xiàng)式(P47)對(duì)多項(xiàng)式P(x)=a0xn+a1
2024-10-16 22:23
【摘要】第九章常微分方程初值問(wèn)題數(shù)值解法引言簡(jiǎn)單的數(shù)值方法與基本概念龍格-庫(kù)塔方法單步法的收斂性與穩(wěn)定性線性多步法方程組和高階方程引言本章討論一階常微分方程的初值問(wèn)題:只要函數(shù)適當(dāng)光滑—如滿足利普希茨條件:理論上就能保證初值問(wèn)題的解
2025-07-20 18:08
【摘要】課程設(shè)計(jì)說(shuō)明書(shū)課程名稱:數(shù)值計(jì)算與算法設(shè)計(jì)課程設(shè)計(jì)題目:導(dǎo)彈追蹤微分方程模型的數(shù)值解法院系:理學(xué)院_專業(yè)班級(jí):_應(yīng)用數(shù)學(xué)2021-2學(xué)號(hào):_202113794_學(xué)生姓名:__儲(chǔ)素霞__指導(dǎo)教師:__許
2025-06-07 13:47
【摘要】第七章微積分的數(shù)值計(jì)算方法Romberg算法§Romberg算法§綜合前幾節(jié)的內(nèi)容,我們知道梯形公式,Simpson公式,Cotes公式的代數(shù)精度分別為1次,3次和5次復(fù)化梯形、復(fù)化Simpson、復(fù)化Cotes公式的收斂階分別為2階、4階和6階無(wú)論從代數(shù)精度還
2025-08-22 10:54
【摘要】1第5章解線性方程組的直接方法2引言與預(yù)備知識(shí)引言線性方程組的數(shù)值解法一般有兩類:1.直接法經(jīng)過(guò)有限步算術(shù)運(yùn)算,可求得方程組精確解的方法(若計(jì)算過(guò)程中沒(méi)有舍入誤差).但實(shí)際計(jì)算中由于舍入誤差的存在和影響,這種方法也只能求得線性方程組的近似解.
2025-01-19 11:24
【摘要】數(shù)值微積分引言在微分中,函數(shù)的導(dǎo)數(shù)是用極限來(lái)定義的,如果一個(gè)函數(shù)是以數(shù)值給出的離散形式,那么它的導(dǎo)數(shù)就無(wú)法用極限運(yùn)算方法求得,當(dāng)然也就更無(wú)法用求道方法去計(jì)算函數(shù)在某點(diǎn)處的導(dǎo)數(shù)。一般來(lái)說(shuō),函數(shù)的導(dǎo)數(shù)依然是一個(gè)函數(shù)。設(shè)函數(shù)f(x)的導(dǎo)數(shù)f′(x)=g(x),高等數(shù)學(xué)關(guān)心的是g(x)的形式和性質(zhì),而數(shù)值分析關(guān)心的問(wèn)題是怎樣的計(jì)算g(x)在一串離散點(diǎn)X=(x1,x2,…xn)的近似
2025-01-13 16:35
【摘要】微分方程數(shù)值解法實(shí)驗(yàn)報(bào)告姓名:班級(jí):學(xué)號(hào):一:?jiǎn)栴}描述求解邊值問(wèn)題:其精確解為問(wèn)題一:取步長(zhǎng)h=k=1/64,1/128,作五點(diǎn)差分格式,用Jacobi迭代法,Gauss_Seidel迭代法,SOR 迭代法(w=)。求解差分方程,以前后兩次重合到小數(shù)點(diǎn)后四位的迭代值作為解的近似值,比較三
2025-07-21 17:34