【摘要】精品資源立體幾何步步高訓練(9)立體幾何基礎知識專題(1)立體幾何基礎知識系列訓練(一)平面一、按下列要求畫出圖形1、直線a經(jīng)過平面a內(nèi)一點A和平面a外一點B2、A?a,B?b,AC與AB交與點C,a?b=m二、判斷正誤1、三點確定一個平面()2、空間一點和一條直線確定
2025-03-25 06:44
【摘要】立幾面測試001一、選擇題1、以下命題(其中a,b表示直線,a表示平面)①若a∥b,bìa,則a∥a ?、谌鬭∥a,b∥a,則a∥b③若a∥b,b∥a,則a∥a ④若a∥a,bìa,則a∥b 其中正確命題的個數(shù)是 () (A)0個(B)1個(C)2個(D)3個2、已知m,n為異面直線,m∥平面a,n∥
【摘要】各專業(yè)完整優(yōu)秀畢業(yè)論文設計圖紙存檔編號贛南師范學院學士學位論文高考中立體幾何的解法探索教學學院數(shù)學與計算機科學學院屆
2025-08-24 08:52
【摘要】2011-2017北京市高考試題立體幾何匯編1、(2011文5)某四棱錐的三視圖如右圖所示,該四棱錐的表面積是(). A.32B.16+16C.48D.16+322、(2011理7)某四面體的三視圖如右圖所示,該四面體四個面的面積中最大的是()A.8B.D.3、(2012理
2025-04-07 20:43
【摘要】2020屆高考數(shù)學復習強化雙基系列課件58《立體幾何總復習》
2024-11-11 08:47
【摘要】2020.12.151、長方體的體積DABCD1A1B1C1等底等高柱體的體積相等嗎?2、柱體的體積定理:等底等高柱體的體積相等3、錐體的體積定理:等底等高錐體的體積相等4、臺體的體積柱、錐、臺體積的關系5、球的體積課本P54例1(考察柱體體積公式)求此棱柱挖去圓
2024-11-10 02:14
【摘要】空間向量在立體幾何中的應用【例1】已知三棱錐P-ABC中,PA⊥面ABC,AB⊥AC,PA=AC=AB,N為AB上一點,AB=4AN,M,S分別為PB,BC的中點.(Ⅰ)證明:CM⊥SN;(Ⅱ)求SN與平面CMN所成角的大小.證明:設PA=1,以A為原點,射線AB,AC,AP分別為x,y,z軸正向建立空間直角坐標系如圖.則P(0,0,1),C(0,1,0),B
2025-08-18 16:48
【摘要】三視圖問題分類解答例1、概念問題1、下列幾何體各自的三視圖中,有且僅有兩個視圖相同的是.(填序號)2、如圖,折線表示嵌在玻璃正方體內(nèi)的一根鐵絲,請把它的三視圖補充完整.3、已知某個幾何體的三視圖如下圖所示,試根據(jù)圖中所標出的尺寸(單位:㎝),可得這個幾何體的體積是.4、已知某個幾何體的三視圖如下圖所示,試根據(jù)圖中
2025-06-07 21:09
【摘要】高中立體幾何知識點總結(jié)一、空間幾何體(一)空間幾何體的類型1多面體:由若干個平面多邊形圍成的幾何體。圍成多面體的各個多邊形叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做多面體的頂點。2旋轉(zhuǎn)體:把一個平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為旋轉(zhuǎn)體的軸。(二
2025-06-24 15:17
【摘要】......立體幾何核心知識點梳理江蘇省靖江高級中學蔡正偉一、考試內(nèi)容1.平面;平面的基本性質(zhì);平面圖形直觀圖的畫法.2.兩條直線的位置關系;平行于同一條直線的兩條直線互相平行;對應邊分別平行的角;異面直線所成的角;兩條異面直線互相垂直的概念;異面直線的公垂線及距離.3.直線和平面的位置關系;直線和平面平行的判定與性質(zhì);
2025-06-22 01:32
【摘要】平行判定總結(jié)一、線線平行的判定:在同一平面內(nèi),沒有公共點的兩條直線..,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行.,那么它們的交線平行..二、線面平行的判定:直線與平面無公共
2025-04-04 05:14
【摘要】精品資源立體幾何步步高訓練(3)直線與平面的位置關系(一)【考點指津】1.了解直線和平面的位置關系(直線在平面內(nèi),直線與平面相交,直線與平面平行).2.掌握直線與平面平行、直線與平面垂直的判定定理和性質(zhì)定理,并能靈活運用它們解題.【知識在線】1.已知直線及平面具有下列哪個條件時,成立?答()
【摘要】廣東高考數(shù)學真題匯編:立體幾何1、(2011?廣東文數(shù))正五棱柱中,不同在任何側(cè)面且不同在任何底面的兩頂點的連線稱為它的對角線,那么一個正五棱柱對角線的條數(shù)共有( ) A、20 B、15C、12 D、101解答:解:由題意正五棱柱對角線一定為上底面的一個頂點和下底面的一個頂點的連線,因為不同在任何側(cè)面內(nèi),故從一個頂點出發(fā)的對角線有2條.正五棱柱對角線的條
2025-04-07 21:28
【摘要】立體幾何大題訓練(1)1、如圖,三棱柱ABC-A1B1C1的底面是邊長為2的等邊三角形,AA1⊥底面ABC,點E,F(xiàn)分別是棱CC1,BB1上的點,且EC=B1F=2FB.(1)證明:平面AEF⊥平面ACC1A1;(2)若AA1=3,求直線AB與平面AEF所成角的正弦值.2、如圖,在四棱錐中,平
2025-03-25 06:43
【摘要】1用空間向量處理立體幾何的問題立體幾何著重的是研究點、線、面之間的關系,研究空間三種位置關系(即空間直線與直線、直線與平面、平面與平面)以及三種角(異面直線所成的角、直線與平面所成的角和二面角)的計算。自上海高考試卷內(nèi)容改革以來,純粹用立體幾何的公理、定理來證明或計算立體幾何問題越來越少,而借助于向量的計算方法來處理立體幾何的問題卻越來越多。本講座就是詳細
2025-08-27 17:12