【摘要】立體幾何復習備考:研究高考試題征服09高考石油中學成衛(wèi)維成也數(shù)學,敗也數(shù)學。數(shù)學、確實是不少高三考生心口的痛。如何提高數(shù)學復習的針對性和實效性?教你一個門道,簡稱“三問法”:第一問自己:“學懂了沒有?”—主要解決“是什么”的問題,即學了什么知識;第二問自己:“領悟了沒有?”—主要解決“為什么”的問題,即用了什么方法;第三問自己:“會用了沒有?”—主要解決“做什么”的問題
2025-01-14 21:48
【摘要】一輪復習之立體幾何姓名一輪復習之立體幾何姓名1.已知三棱錐中,為等腰直角三角形,,設點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
2025-07-24 12:16
【摘要】一、判定兩線平行的方法1、平行于同一直線的兩條直線互相平行2、垂直于同一平面的兩條直線互相平行3、如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線就和交線平行4、如果兩個平行平面同時和第三個平面相交,那么它們的交線平行5、在同一平面內(nèi)的兩條直線,可依據(jù)平面幾何的定理證明二、判定線面平行的方法1、據(jù)定義:如果一條直線和一個平面
2025-04-17 01:18
【摘要】專題:空間角一、基礎梳理(1)異面直線所成的角的范圍:。(2)異面直線垂直:如果兩條異面直線所成的角是直角,則叫兩條異面直線垂直。兩條異面直線垂直,記作。(3)求異面直線所成的角的方法:(1)通過平移,在一條直線上(或空間)找一點,過該點作另一(或兩條)直線的平行線;(2)找出與一條直線平行且與另一條相交的直線,那么這兩條相交直線所成的角即為所求。平移技巧
2025-04-17 07:49
【摘要】高考鏈接三視圖專題訓練[2011·安徽卷]一個空間幾何體的三視圖如圖1-1所示,則該幾何體的表面積為( )圖1-1A.48B.32+8C.48+8D.80[2011·安徽卷]C 【解析】由三視圖可知本題所給的是一個底面為等腰梯形的放倒的直四棱柱(如圖所示),所以該直四棱柱的表面積為S=2××(
2025-03-25 06:43
【摘要】空間向量的引入為代數(shù)方法處理立體幾何問題提供了一種重要的工具和方法,解題時,可用定量的計算代替定性的分析,從而回避了一些嚴謹?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問題,也是高考的熱點之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角與距離的問題。建立空間直角坐標系,解立體幾何題1122330???abab
2024-11-09 01:53
【摘要】空間向量在立體幾何中的應用5前段時間我們研究了用空間向量求角(包括線線角、線面角和面面角)、求距離(包括線線距離、點面距離、線面距離和面面距離)今天我來研究如何利用空間向量來解決立體幾何中的有關證明及計算問題。一、空間向量的運算及其坐標運算的掌握二、立體
2025-01-08 14:05
【摘要】第六講立體幾何新題型【考點透視】(A),對于異面直線的距離,、直線和平面所成的角、、二面角的平面角、兩個平行平面間的距離的概念.(B)版.①理解空間向量的概念,掌握空間向量的加法、減法和數(shù)乘.②了解空間向量的基本定理,理解空間向量坐標的概念,掌握空間向量的坐標運算.③掌握空間向量的數(shù)量積的定義及其性質(zhì),掌握用直角坐標計算空間向量數(shù)量積公式.④理解直線的方向向量
2025-08-05 18:17
【摘要】《立體幾何》專題練習題1.如圖正方體中,E、F分別為D1C1和B1C1的中點,P、Q分別為A1C1與EF、AC與BD的交點,(1)求證:D、B、F、E四點共面;(2)若A1C與面DBFE交于點R,求證:P、Q、R三點共線2.已知直線、異面,平面過且平行于,平面過且平行于,求證:∥.FECByZ
2025-04-17 13:06
【摘要】雨竹林高考資訊網(wǎng)福建高考招生資訊網(wǎng)2010年高考數(shù)學二輪專題復習教案――立體幾何一、本章知識結(jié)構(gòu):二、重點知識回顧1、空間幾何體的結(jié)構(gòu)特征(1)棱柱、棱錐、棱臺和多面體棱柱是由滿足下列三個條件的面圍成的幾何體:①有兩個面互相平行;②其余各面都是四邊形;③每相鄰兩個四邊形的公共邊都互相平行;棱柱按底面邊數(shù)可分為:三棱柱、四棱柱、五棱柱等.棱柱性質(zhì):①棱
2025-06-08 00:25
【摘要】高中課程復習專題1高中課程復習專題——數(shù)學立體幾何一空間幾何體㈠空間幾何體的類型1多面體:由若干個平面多邊形圍成的幾何體。圍成多面體的各個多邊形叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做多面體的頂點。2旋轉(zhuǎn)體:把一個平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為旋轉(zhuǎn)
2024-12-17 02:36
【摘要】華夏學校資料庫1、已知四邊形是空間四邊形,分別是邊的中點(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。2、如圖,已知空間四邊形中,,是的中點。求證:(1)平面CDE;AEDBC(2)平面平面。
2025-04-04 05:14
【摘要】高中課程復習專題——數(shù)學立體幾何一空間幾何體㈠空間幾何體的類型1多面體:由若干個平面多邊形圍成的幾何體。圍成多面體的各個多邊形叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做多面體的頂點。2旋轉(zhuǎn)體:把一個平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為
【摘要】1上杭縣高級中學講課人:周文才時間:07年12月14日2345678所以:解:以點C為坐標原點建立空間直角坐標系如圖所示,設則C||所以與所成角的余弦值為9設平面xyz點評:找到
2024-11-12 16:42
【摘要】理科數(shù)學高考立體幾何大題精選不建系求解1.本小題滿分12分)(注意:在試題卷上作答無效)如圖,四棱錐S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E為棱SB上的一點,平面EDC平面SBC.(Ⅰ)證明:SE=2EB;(Ⅱ)求二面角A-DE-C的大小.2.(本小
2025-04-17 06:43