【摘要】空間向量及其運算空間向量及其加減運算教學目標:(1)通過本章的學習,使學生理解空間向量的有關概念。(2)掌握空間向量的加減運算法則、運算律,并通過空間幾何體加深對運算的理解。能力目標:(1)培養(yǎng)學生的類比思想、轉化思想,數(shù)形結合思想,培養(yǎng)探究、研討、綜合自學應用能力。(2)培養(yǎng)學生空間想象能力,能借助圖形理解空
2024-11-24 14:20
【摘要】空間向量的數(shù)乘運算【使用說明及學法指導】1.先自學課本,理解概念,完成導學提綱;2.小組合作,動手實踐。【學習目標】1.掌握空間向量的數(shù)乘運算律,能進行簡單的代數(shù)式化簡;2.理解共線向量定理和共面向量定理及它們的推論;3.能用空間向量的運算意義及運算律解決簡單的立體幾何中的問題.【重點】能用空間向量的運算意義
2024-11-18 16:52
【摘要】第九章空間向量專題復習制作人:焦明輝一復習回顧1平行六面體法則:(1)定義:如果表示空間向量的有向線段所在直線互相平行或重合,則這些向量叫做共線向量(或平行向量),記作(2)共線向量定理:對于空間任意兩個向量a、b(b=0),a//b的充要條件是存在實數(shù)λ使a=λb.(3)推論
2024-11-09 12:28
【摘要】1北師大版高中數(shù)學選修2-1第二章空間向量與立體幾何法門高中姚連省制作2平面向量的加法、減法與數(shù)乘運算向量加法的三角形法則ab向量加法的平行四邊形法則ba向量減法的三角形法則aba(k0)ka(k0)k向量的數(shù)乘a3推廣:
2024-11-18 00:48
【摘要】空間向量的正交分解及其坐標表示一、空間直角坐標系單位正交基底:如果空間的一個基底的三個基向量互相垂直,且長都為1,則這個基底叫做單位正交基底,常用來I,j,k表示空間直角坐標系:在空間選定一點O和一個單位正交基底i、j、k。以點O為原點,分別以i、j、
2024-11-18 07:54
【摘要】2020年12月18日星期五學習目標?⒈掌握空間向量夾角和模的概念及表示方法;?⒉掌握兩個向量數(shù)量積的概念、性質和計算方法及運算律;?⒊掌握兩個向量數(shù)量積的主要用途,會用它解決立體幾何中的一些簡單問題.?重點:兩個向量的數(shù)量積的計算方法及其應用.?難點:兩個向量數(shù)量積的幾何意義.共面向量定理:如果兩個向量
2024-11-11 21:09
【摘要】1第九章直線、平面、簡單幾何體第講2考點搜索●空間向量的加法、減法與數(shù)乘●空間向量基本定理,以及共線、共面向量定理●空間向量的數(shù)量積及其運算性質高考高考猜想1.空間向量的基本運算.2.運用向量方法解決共點、共線、共面以及平行、垂直、夾角、距離等問題.3?1.空間向
2025-08-11 14:44
【摘要】1空間向量及其運算(四)共線與共面分析2上一節(jié),我們發(fā)現(xiàn):1.空間一點P在直線AB上的充要條件是________________________________.空間向量及其運算(四)共線與共面分析?唯一實數(shù),tR?使APt?AB或對空間任意一點,存在唯一實數(shù),tR?使
2025-07-24 15:35
【摘要】零向量、單位向量概念:向量的概念:向量的表示方法:共線向量與平行直線的關系:平行向量定義:相等向量定義:ABCABC問題1:如圖,某人從點A到點B,再從點B按原方向到C點,則兩次位移的和可用哪個向量表示?由此可以得到什么結論?問題2:如圖,某人從點A到點B,再從點B按
2025-08-05 04:08
【摘要】坐標表示1.空間向量的基本定理:2.平面向量的坐標表示及運算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個單位向量(,)pxy則的坐標為1212(,),(,)aaabbb??(2)若11221122(,)
2024-11-18 11:25
【摘要】向量數(shù)乘運算及其幾何意義問題提出、差向量?算,如3+3+3+3+3=5×3=等的幾個向量相加是否也能轉化為數(shù)乘運算呢?這需要從理論上進行探究.abaabba+ba-b探究一:向量的數(shù)乘運算及其幾何意義思考1:已知非零向量a,如何求作向量a+a+a和(-a)+(-
2024-11-12 16:45
【摘要】數(shù)量積運算一、兩個向量的夾角兩條相交直線的夾角是指這兩條直線所成的銳角或直角,即取值范圍是(0°,90°],而向量的夾角可以是鈍角,其取值范圍是[0°,180°]二、兩個向量的數(shù)量積注:①兩個向量的數(shù)量積是數(shù)量,而不是向量.②規(guī)定:零向量與任意向量的數(shù)量積等于零.a
【摘要】第一篇:教學設計教案 教學準備 1、知識與技能:理解空間向量基本定理及其意義,掌握空間向量的正交分解及其坐標表示,會在簡單問題中選用空間三個不共面向量作為基底表示其他向量。 2、過程與方法:...
2024-11-16 01:42
【摘要】一、向量的直角坐標運算則設),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???ababab112233(,,)???ababab123(,,),()??
2024-11-17 13:01
【摘要】講練學案部分§空間向量及其加減運算.知識點一空間向量的概念判斷下列命題是否正確,若不正確,請簡述理由.①向量AB與AC是共線向量,則A、B、C、D四點必在一條直線上;②②單位向量都相等;③任一向量與它的相反向量不相等;④四邊形ABCD是平行四邊形
2024-12-08 01:49