【摘要】《曲線與方程》教學目標?理解并能運用曲線的方程、方程的曲線的概念,建立“數(shù)”與“形”的橋梁,培養(yǎng)學生數(shù)形結(jié)合的意識.?教學重點:求曲線的方程?教學難點:掌握用直接法、代入法、交軌法等求曲線方程的方法(1)、求第一、三象限里兩軸間夾角平分線的坐標滿足的關系第一、三象限角平分線??點的橫坐標與縱坐標相等
2024-11-18 12:14
【摘要】雙曲線及其標準方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復習|M
2024-11-19 16:21
【摘要】直線與圓的位置關系一、教材分析學生在初中的學習中已了解直線與圓的位置關系,并知道可以利用直線與圓的交點的個數(shù)以及圓心與直線的距離d與半徑r的關系判斷直線與圓的位置關系,但是,在初中學習時,利用圓心與直線的距離d與半徑r的關系判斷直線與圓的位置關系的方法卻以結(jié)論性的形式呈現(xiàn).在高一學習了解析幾何以后,要考慮的問題是如何掌握由直線
2024-12-08 02:40
【摘要】直線與雙曲線一:直線與雙曲線位置關系種類XYO種類:相離;相切;相交(兩個交點,一個交點)位置關系與交點個數(shù)XYOXYO相交:兩個交點相切:一個交點相離:0個交點相交:一個交點總結(jié)兩個交點一個交點
2024-11-09 01:25
【摘要】?創(chuàng)設情境引入新課一艘輪船在沿直線返回港口的途中,接到氣象臺的臺風預報:臺風中心位于輪船正西40km處,受影響的范圍是半徑長為20km的圓形區(qū)域.已知港口位于臺風中心正北20km處,如果這艘輪船不改變航線,那么它是否會受到臺風的影響?輪船港口臺風思考1:解決這個問題的本質(zhì)是什么?思考2:
2024-11-17 05:38
【摘要】鹽城市時楊中學2021年達標課教學簡案學科數(shù)學授課教師張發(fā)軍授課班級高二(7)教學內(nèi)容雙曲線的幾何性質(zhì)(2)課型新授課課題:雙曲線的幾何性質(zhì)(2)一、三維目標:1、知識與技能:使學生掌握雙曲線的如下性質(zhì):對稱性、截距、頂點、軸、中心、離心率和準線。使學生能夠根據(jù)雙曲線的漸近線、確定雙曲線的范
2024-12-08 07:53
【摘要】直線和雙曲線的位置關系作課教師簡介:周萍,畢業(yè)于齊齊哈爾師范學院數(shù)學系,中學一級教師,教齡12年,省級教學能手,市、縣級骨干教師,市優(yōu)秀實驗教師,縣科研骨干教師。直線和橢圓的位置關系:相交相切相離→兩個公共點→一個公共點→沒
2024-11-16 21:27
【摘要】直線與圓的方程的應用問題提出通過直線與圓的方程,可以確定直線與圓、圓和圓的位置關系,對于生產(chǎn)、生活實踐以及平面幾何中與直線和圓有關的問題,我們可以建立直角坐標系,通過直線與圓的方程,將其轉(zhuǎn)化為代數(shù)問題來解決.對此,我們必須掌握解決問題的基本思想和方法.知識探究:直線與圓的方程在實際生活中的應用問題Ⅰ:一艘輪船在沿
2024-11-18 12:19
【摘要】雙曲線的性質(zhì)(一)222bac??定義圖象方程焦點的關系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)12222??byax12
2024-11-18 08:47
【摘要】直線的點斜式方程復習.,),,(),,(2.122211的斜率那么直線如果已知直線上兩點PQxxyxQyxP?的定義及其取值范圍;???xyO),(22yxQ),(11yxP直線的傾斜角的取值范圍是:[00,1800)B?tan???????xyk1212xxyy
2024-11-18 12:11
【摘要】4.直線與圓的位置關系第一課時直線與圓的位置關系(新授課)[提出問題]“大漠孤煙直,長河落日圓”是唐朝詩人王維的詩句,它描述了黃昏日落時分塞外特有的景象.如果我們把太陽看成一個圓,地平線看成一條直線,觀察下面三幅太陽落山的圖片.問題1:圖片中,地平線與太陽的位置關系怎樣?提示:(1)相離(2)相切(3)相交
2024-11-17 23:16
【摘要】課題2。3。3直線與圓的位置關系課時1課型新教學目標知識與技能:(1)掌握判斷直線與圓的位置關系的代數(shù)方法和幾何方法;過圓上一點的圓的切線方程;(2)培養(yǎng)學生綜合運用圓有關知識的能力,會用“數(shù)形結(jié)合”的數(shù)學思想解決問題.過程方法與能力:(1)通過直線和圓的位置關系
2024-11-30 14:34
【摘要】二00五年十一月執(zhí)教:杭州市余杭高級中學吳寅靜直線與圓錐曲線的位置關系認真做事能把事做對,用心做事能把事做好。判斷直線與雙曲線位置關系的一般思路一元一次方程一元二次方程直線與雙曲線的漸近線平行相交(一個公共點)計算判別式△0△=0△0
2024-11-09 04:00
【摘要】直線與雙曲線的位置關系相交相切相離沒有交點一個交點兩個交點、一個交點直線與雙曲線相交相交弦長公式|AB|=2121xxk??21211yyk??|AB|=例1過點P(1,)的直線與雙曲線21322??yx
2025-07-23 08:32
【摘要】直線與圓的位置關系備用習題m>0,則直線2(x+y)+1+m=0與圓x2+y2=m的位置關系為()分析:圓心到直線的距離為d=21m?,圓半徑為m.∵d-r=21m?-m=21(m-2m+1)=
2024-12-08 20:20